0608-nn和autograd的区别

pytorch完整教程目录:https://www.cnblogs.com/nickchen121/p/14662511.html

一、nn 和 autograd 的区别

Module 利用的是 autograd 的技术,主要是为了实现前向传播。在 forward 函数中,Module 对输入的 Variable 进行的各种操作基本都使用到了 autograd 的技术。

因此在这里主要对比 autograd.Functionnn.Module 两者之间的区别。

  • autograd.Function 利用 Tensor 对 autograd 技术的扩展,为 autograd 实现了新的运算操作符,不仅要实现前向传播还要手动实现反向传播
  • nn.Module 利用了 autograd 技术,对 nn 的功能进行扩展,实现了深度学习中的大部分层,并且只需要实现前向传播,autograd 就会自动实现反向传播
  • nn.functional 是一些 autograd 操作的集合,是经过封装的函数,如果使用它来构建深度神经网络,需要自己编写前向传播和反向传播函数

二、Function 和 Module 在实际中使用的情况

Funciton 和 Module 作为扩充 torch 的两种接口,在实际中

  1. 如果某一个操作在 autograd 中尚未支持,则可以利用 Function 手动实现对应的前向传播和反向传播
  2. 如果某些时候利用 autograd 接口比较复杂,也可以利用 Function 将多个操作聚合,实现优化,如第 3 章 扩展 autograd 那一节实现的 Sigimoid 一样,此时将会比直接利用 autograd 低级别的操作要快
  3. 如果只是想在深度学习中增加某一层,使用 Module 进行封装则会更加简单

0608-nn和autograd的区别的更多相关文章

  1. Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别

    在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...

  2. PyTorch 中,nn 与 nn.functional 有什么区别?

    作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...

  3. 深度学习框架PyTorch一书的学习-第四章-神经网络工具箱nn

    参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autogr ...

  4. [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList

    1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...

  5. PyTorch教程之Neural Networks

    我们可以通过torch.nn package构建神经网络. 现在我们已经了解了autograd,nn基于autograd来定义模型并对他们有所区分. 一个 nn.Module模块由如下部分构成:若干层 ...

  6. PyTorch进行深度学习入门

    一.PyTorch是什么? 这是一个基于Python的科学计算软件包,针对两组受众: ①.NumPy的替代品,可以使用GPU的强大功能 ②.深入学习研究平台,提供最大的灵活性和速度 二.入门 ①.张量 ...

  7. 60 分钟极速入门 PyTorch

    2017 年初,Facebook 在机器学习和科学计算工具 Torch 的基础上,针对 Python 语言发布了一个全新的机器学习工具包 PyTorch. 因其在灵活性.易用性.速度方面的优秀表现,经 ...

  8. DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | NEURAL NETWORKS

    神经网络可以使用 torch.nn包构建. 现在你已经对autograd有所了解,nn依赖 autograd 定义模型并对其求微分.nn.Module 包括层,和一个返回 output 的方法 - f ...

  9. 实践torch.fx第一篇——基于Pytorch的模型优化量化神器

    第一篇--什么是torch.fx 今天聊一下比较重要的torch.fx,也趁着这次机会把之前的torch.fx笔记整理下,笔记大概拆成三份,分别对应三篇: 什么是torch.fx 基于torch.fx ...

  10. Neural Networks

    神经网络能够使用torch.nn包构建神经网络. 现在你已经对autogard有了初步的了解,nn基于autograd来定义模型并进行微分.一个nn.Module包含层,和一个forward(inpu ...

随机推荐

  1. 【Tutorial C】04 基本输入输出

    输出单个字符 putchar('a'); // 字符输出函数,其功能是在终端(显示器)输出单个字符. putchar('\n'); // 支持转义换行 putchar(77); // 可以直接注入AS ...

  2. 【SqlServer】02 SSMS工具基本使用入门

    之前的安装中除了SqlServer,还有一个SSMS管理工具 数据库的访问依赖于工具 SSMS提供了两种登陆方式: 创建用户: 删除用户: 创建数据库: 删除数据库: 创建表: 设置表的字段,字段名称 ...

  3. nvidia 机器人仿真环境Isaac Sim

  4. 深度学习框架theano下的batch_norm实现代码——强化学习框架rllab

    深度学习框架theano下的batch_norm实现代码--强化学习框架rllab # encoding: utf-8 import lasagne.layers as L import lasagn ...

  5. [学习笔记] 树链剖分(重链剖分) - 图论 & 数据结构

    树链剖分 树链剖分,用于解决一系列的树中链上问题的算法(数据结构).其实对于树链修改和树链求和问题可以使用更加方便的树上差分解决,但是对于像求树链最大(小)权值之类的更复杂的问题,差分就显得不够用了. ...

  6. 解决 Docker CE 在无根模式(rootless)下无法通过 IPv6 拉取映像的问题

    折腾一天快把我逼疯了 本来 Docker 对 IPv6 的支持就不好,再来个 rootless,雪上加霜 首先,我们要区分 Docker Engine 和 里面的 Image. 拉取映像是 Docke ...

  7. 【牛客刷题】BM50 两数之和

    本题的链接:BM50 两数之和 最初拿到这个题目首先想到的就是两个指针,然后向后遍历,于是写出来的代码也简明易懂: package main /** * * @param numbers int整型一 ...

  8. 代码随想录Day22

    77. 组合 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合. 你可以按 任何顺序 返回答案. 示例 1: 输入:n = 4, k = 2 输出: [ [2,4], [ ...

  9. Blender - 动画demo体后感

    Blender 一个非常不错的免费的3D.2D软件 超级不错 我初步的按照网上的动画教程,做了一个很简单的 不断跳动的独眼球 为什么独眼?一开始我是画了两个眼睛,结果最后总是出了点问题,没有办法cop ...

  10. 【Azure Developer】上手 The Best AI Code "Cursor" : 仅仅7次对话,制作个人页面原型,效果让人惊叹!

    AI Code 时代早已开启,自己才行动.上手一试,让人惊叹.借助这感叹的情绪,把今天操作Cursor的步骤记录下来,也分享给大家. 推荐大家上手一试,让你改变! 准备阶段 下载 Cursor(htt ...