Neural Style学习2——环境安装
neural-style Installation
This guide will walk you through the setup for neural-style
on Ubuntu.
Step 1: Install torch7
First we need to install torch, following the installation instructions
here:
# in a terminal, run the commands
cd ~/
curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
git clone https://github.com/torch/distro.git ~/torch --recursive
cd ~/torch; ./install.sh
The first script installs all dependencies for torch and may take a while.
The second script actually installs lua and torch.
The second script also edits your .bashrc
file so that torch is added to your PATH
variable;
we need to source it to refresh our environment variables:
source ~/.bashrc
To check that your torch installation is working, run the command th
to enter the interactive shell.
To quit just type exit
.
Step 2: Install loadcaffe
loadcaffe
depends on Google's Protocol Buffer library
so we'll need to install that first:
sudo apt-get install libprotobuf-dev protobuf-compiler
Now we can instal loadcaffe
:
luarocks install loadcaffe
Step 3: Install neural-style
First we clone neural-style
from GitHub:
cd ~/
git clone https://github.com/jcjohnson/neural-style.git
cd neural-style
Next we need to download the pretrained neural network models:
sh models/download_models.sh
You should now be able to run neural-style
in CPU mode like this:
th neural_style.lua -gpu -1 -print_iter 1
If everything is working properly you should see output like this:
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:505] Reading dangerously large protocol message. If the message turns out to be larger than 1073741824 bytes, parsing will be halted for security reasons. To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
[libprotobuf WARNING google/protobuf/io/coded_stream.cc:78] The total number of bytes read was 574671192
Successfully loaded models/VGG_ILSVRC_19_layers.caffemodel
conv1_1: 64 3 3 3
conv1_2: 64 64 3 3
conv2_1: 128 64 3 3
conv2_2: 128 128 3 3
conv3_1: 256 128 3 3
conv3_2: 256 256 3 3
conv3_3: 256 256 3 3
conv3_4: 256 256 3 3
conv4_1: 512 256 3 3
conv4_2: 512 512 3 3
conv4_3: 512 512 3 3
conv4_4: 512 512 3 3
conv5_1: 512 512 3 3
conv5_2: 512 512 3 3
conv5_3: 512 512 3 3
conv5_4: 512 512 3 3
fc6: 1 1 25088 4096
fc7: 1 1 4096 4096
fc8: 1 1 4096 1000
WARNING: Skipping content loss
Iteration 1 / 1000
Content 1 loss: 2091178.593750
Style 1 loss: 30021.292114
Style 2 loss: 700349.560547
Style 3 loss: 153033.203125
Style 4 loss: 12404635.156250
Style 5 loss: 656.860304
Total loss: 15379874.666090
Iteration 2 / 1000
Content 1 loss: 2091177.343750
Style 1 loss: 30021.292114
Style 2 loss: 700349.560547
Style 3 loss: 153033.203125
Style 4 loss: 12404633.593750
Style 5 loss: 656.860304
Total loss: 15379871.853590
(Optional) Step 4: Install CUDA
If you have a CUDA-capable GPU from NVIDIA then you can
speed up neural-style
with CUDA.
First download and unpack the local CUDA installer from NVIDIA; note that there are different
installers for each recent version of Ubuntu:
# For Ubuntu 14.10
wget http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/rpmdeb/cuda-repo-ubuntu1410-7-0-local_7.0-28_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1410-7-0-local_7.0-28_amd64.deb
# For Ubuntu 14.04
wget http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/rpmdeb/cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1404-7-0-local_7.0-28_amd64.deb
# For Ubuntu 12.04
http://developer.download.nvidia.com/compute/cuda/7_0/Prod/local_installers/rpmdeb/cuda-repo-ubuntu1204-7-0-local_7.0-28_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1204-7-0-local_7.0-28_amd64.deb
Now update the repository cache and install CUDA. Note that this will also install a graphics driver from NVIDIA.
sudo apt-get update
sudo apt-get install cuda
At this point you may need to reboot your machine to load the new graphics driver.
After rebooting, you should be able to see the status of your graphics card(s) by running
the command nvidia-smi
; it should give output that looks something like this:
Sun Sep 6 14:02:59 2015
+------------------------------------------------------+
| NVIDIA-SMI 346.96 Driver Version: 346.96 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX TIT... Off | 0000:01:00.0 On | N/A |
| 22% 49C P8 18W / 250W | 1091MiB / 12287MiB | 3% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX TIT... Off | 0000:04:00.0 Off | N/A |
| 29% 44C P8 27W / 189W | 15MiB / 6143MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX TIT... Off | 0000:05:00.0 Off | N/A |
| 30% 45C P8 33W / 189W | 15MiB / 6143MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 1277 G /usr/bin/X 631MiB |
| 0 2290 G compiz 256MiB |
| 0 2489 G ...s-passed-by-fd --v8-snapshot-passed-by-fd 174MiB |
+-----------------------------------------------------------------------------+
(Optional) Step 5: Install CUDA backend for torch
This is easy:
luarocks install cutorch
luarocks install cunn
You can check that the installation worked by running the following:
th -e "require 'cutorch'; require 'cunn'; print(cutorch)"
This should produce output like the this:
{
getStream : function: 0x40d40ce8
getDeviceCount : function: 0x40d413d8
setHeapTracking : function: 0x40d41a78
setRNGState : function: 0x40d41a00
getBlasHandle : function: 0x40d40ae0
reserveBlasHandles : function: 0x40d40980
setDefaultStream : function: 0x40d40f08
getMemoryUsage : function: 0x40d41480
getNumStreams : function: 0x40d40c48
manualSeed : function: 0x40d41960
synchronize : function: 0x40d40ee0
reserveStreams : function: 0x40d40bf8
getDevice : function: 0x40d415b8
seed : function: 0x40d414d0
deviceReset : function: 0x40d41608
streamWaitFor : function: 0x40d40a00
withDevice : function: 0x40d41630
initialSeed : function: 0x40d41938
CudaHostAllocator : torch.Allocator
test : function: 0x40ce5368
getState : function: 0x40d41a50
streamBarrier : function: 0x40d40b58
setStream : function: 0x40d40c98
streamBarrierMultiDevice : function: 0x40d41538
streamWaitForMultiDevice : function: 0x40d40b08
createCudaHostTensor : function: 0x40d41670
setBlasHandle : function: 0x40d40a90
streamSynchronize : function: 0x40d41590
seedAll : function: 0x40d414f8
setDevice : function: 0x40d414a8
getNumBlasHandles : function: 0x40d409d8
getDeviceProperties : function: 0x40d41430
getRNGState : function: 0x40d419d8
manualSeedAll : function: 0x40d419b0
_state : userdata: 0x022fe750
}
You should now be able to run neural-style
in GPU mode:
th neural_style.lua -gpu 0 -print_iter 1
(Optional) Step 6: Install cuDNN
cuDNN is a library from NVIDIA that efficiently implements many of the operations (like convolutions and pooling)
that are commonly used in deep learning.
After registering as a developer with NVIDIA, you can download cuDNN here.
Make sure to download Version 4.
After dowloading, you can unpack and install cuDNN like this:
tar -xzvf cudnn-7.0-linux-x64-v4.0-prod.tgz
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-7.0/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-7.0/include/
Next we need to install the torch bindings for cuDNN:
luarocks install cudnn
You should now be able to run neural-style
with cuDNN like this:
th neural_style.lua -gpu 0 -backend cudnn
Note that the cuDNN backend can only be used for GPU mode.
注意:在安装过程中会遇到以下几个坑!!!
坑1:torch的依赖库很多!!
curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
运行这个时,一定会经过较长时间的安装!!!!由于我这里的网很差,所以如果你的也有类似的情况,那么可能会出现:“xxx 校验和不符”。这时说明完全没有安装依赖库好吧!!我以前以为已经装好了,直接下完neural-style,然后./install.sh。我擦,结果出现什么cmake not found之类的。然后我还傻乎乎的去 sudo apt-get install cmake。结果又出现其他乱七八糟的,现在就是一句话:curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash是把所有的依赖库都会安装好!!并且安装完之后会有类似提示:“torch dependencies have already installed.”
坑2:安装cuda,版本不符
sudo dpkg -i cuda-repo-ubuntu1204-7-0-local_7.0-28_amd64.deb
这个理论上貌似没错,但是后面
sudo apt-get update
sudo apt-get install cuda
这里用的apt-get得到的是cuda7.5的!!和上面安装的版本不符合!所以正确方式:
自己去官网下载,然后安装!
根据我的ubuntu版本,因此我选择
cuda-repo-ubuntu1404-7-5-local_7.5-18_amd64.deb
以后如果apt-get得到的cuda版本更高了,就一定要安装对应的版本即可!
坑3 cudnn和cuda版本一定要对应!
原文
tar -xzvf cudnn-7.0-linux-x64-v4.0-prod.tgz
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-7.0/lib64/
sudo cp cuda/include/cudnn.h /usr/local/cuda-7.0/include/
luarocks install cudnn
此处自己去下载for cuda7.5的,此处即为cudnn-7.5-linux-x64-v5.0-ga.tgz
当然了,把
sudo cp cuda/include/cudnn.h /usr/local/cuda-7.0/include/
的7.0改成7.5。
坑4 可能出现’libcudnn not found in library path’的情况
截取其中一段错误信息:
Please install CuDNN from https://developer.nvidia.com/cuDNN
Then make sure files named as libcudnn.so.5 or libcudnn.5.dylib are placed in your library load path (for example /usr/local/lib , or manually add a path to LD_LIBRARY_PATH)
LD_LIBRARY_PATH是该环境变量,主要用于指定查找共享库(动态链接库)时除了默认路径之外的其他路径。由于刚才已经将
“libcudnn*”复制到了/usr/local/cuda-7.5/lib64/下面,因此需要
sudo gedit /etc/ld.so.conf.d/cudnn.conf 就是新建一个conf文件。名字随便
加入刚才的路径/usr/local/cuda-7.5/lib64/
反正我还添加了/usr/local/cuda-7.5/include/,这个估计不要也行。
保存后,再sudo ldconfig来更新缓存。(可能会出现libcudnn.so.5不是符号连接的问题,不过无所谓了!!)
此时运行
th neural_style.lua -gpu 0 -backend cudnn
成功了!!!!
发现用cudnn时,变成50个50个一显示了,速度快了些。刚才但存用cuda只是1个1个显示的。不说了,歇会儿。
总结
一定要版本对应!!以后apt-get会得到更高的版本的cuda和cudnn,这时候一定要根据实际情况下载对应版本的进行安装。方法类似。
Neural Style学习2——环境安装的更多相关文章
- Neural Style学习3——操作
Basic usage: th neural_style.lua -style_image <image.jpg> -content_image <image.jpg> Ope ...
- go学习笔记-环境安装
环境安装 环境安装 主要包含三个部分 运行环境及开发sdk 系统环境和路径配置 IDE配置 以mac环境为例,其他环境类似 运行环境及开发sdk 使用 brew 安装 brew install go ...
- react-native学习之环境安装
1.首先是java环境安装-安装JDK 2.安装Android-SDK,推荐以下地址:http://tools.android-studio.org/index.php/sdk 然后打开SDK Man ...
- Electron – 基础学习(1): 环境安装、创建项目及入门
这几天到年底了,公司也没啥事,闲着就到处瞅瞅.记得上一家公司的时候用 Electron+ng1 写过项目,只是那个时候项目框架都是别人搭的,自己只负责写功能,对Electron没啥认识. 这几天想着反 ...
- 深度学习PyTorch环境安装——mac
参考:http://python.jobbole.com/87522/ 1.首先要安装Anaconda 1)什么是Anaconda Anaconda是Python的包管理器和环境管理器,是一个包含18 ...
- Neural Style学习1——简介
该项目是Github上面的一个开源项目,其利用卷积神经网络的理论,参照论文A Neural Algorithm of Artistic Style,可以实现一种效果:两张图片,一张取其内容,另一张取其 ...
- 学习Scala01 环境安装
Scala是一门运行在jvm上的多范式语言,作为一个java程序员,使用Scala来写写程序,既不用担心会没有java强大的库支持,又能快速地写出简短强悍的代码,除此之外scala还为我们提供了强大的 ...
- UCML快速开发平台学习1-UCML环境安装
最近公司项目时间紧张,经过各位大神的PK,决定用多年前话10W采购过来,一直被雪藏的UCML来开发.为啥花了钱买回来不用我就不吐槽了. UCML安装 翻看安装手册,貌似不 ...
- python学习笔记-环境安装【1】
1.在 WINDOWS 下面要运行命令 pip install virtualenvwrapper-win才行 参考地址http://blog.csdn.net/liuhongyue/article/ ...
随机推荐
- Picasso设置圆角
package liu.roundimagedemo.view; import android.graphics.Bitmap; import android.graphics.BitmapShade ...
- JavaScript的个人学习随手记(三)
JavaScript Window - 浏览器对象模型 Window 对象 以下window对象时使用均可省略window 所有浏览器都支持 window 对象.它表示浏览器窗口. 所有 JavaSc ...
- 推荐几个精致的web UI框架
1.Aliceui Aliceui是支付宝的样式解决方案,是一套精选的基于 spm 生态圈的样式模块集合,是 Arale 的子集,也是一套模块化的样式命名和组织规范,是写 CSS 的更好方式. git ...
- JVM-加载,链接,初始化
Java Virtual Machine 动态的加载,链接和初始化类和接口.那么,Class 二进制文件是怎样被 JVM 加载到内存中的?JVM 如何描述一个 Java 类?类或接口怎么才能让 JVM ...
- MS SQL 监控错误日志的告警信息
SQL Server的错误消息(Error Message)按照消息的严重级别一共划分25个等级,级别越高,表示严重性也越高.但是如果你统计sys.messages,你会发现,实际上只有16(SQL ...
- STM32 Unicode 与 GBK 转换 .bin文件放到SD卡是啥意思
2个数组 : }; }; 一个是Unicode 编码,一个是GBK编码: 用c2b软件转成.bin 二进制文件放到SD卡里: SD卡放入字库 .FON STM32 代码: 代码中SD卡字库和二进制路径 ...
- stm32 hid 键盘描述
/* USB Standard Device Descriptor */ const uint8_t Joystick_DeviceDescriptor[JOYSTICK_SIZ_DEVICE_DES ...
- Ubuntu配置OpenLDAP
sudo apt-get install slapd ldap-utils sudo dpkg-reconfigure slapd sudo apt-get purge slapd sudo apt- ...
- 《小白的CFD之旅》招募写手
<小白的CFD之旅>系列招募写手. 由于工作繁忙,<小白的CFD之旅>系列更新缓慢,现招募志愿者写手.这是一个分享平台,欢迎各位愿意分享自己CFD学习经历的朋友们. <小 ...
- J2EE基础之JavaBean
J2EE基础之JavaBean 1.什么是JavaBean? JavaBean本质上来说就是一个Java类,它通过封装属性和方法成为具有独立功能.可重复使用的,并可以与其他控件通信的组件对象.通过在J ...