Description

Link.

给出一个堆,然后让你填数进去,使得其满足小根堆的性质,并使编号靠前的点的数最大。

Solution

考虑贪心,把原数列降序排序,然后因为这个东西是整除分块的形式,所以一个结点的子树一定对应的是原序列的一个子区间。不过这个东西并不能用根号分治来做。

然后对于一个子树的根 \(u\),我们给他 \([l,r]\) 这个区间,\(\text{subtree}(u)-\{u\}=a_{[l,r)}\),结点 \(u=a_{r}\),\([l,r]\) 按需分配,反正就优先队列维护就行了。

代码大概长成这样子:

void Search(int x) {
for(int y in SonOf(x)) Search(y);
if(x != VirtualRoot) {
ans[x] = PriorityQueue.top();
PriorityQueue.pop();
}
}

那个 VirtualRoot 是为了编码方便弄出来的一个虚根,不用管。同时发现这个做法只有在 \(\forall i,j,s.t.d_{i}\neq d_{j}\) 的时候才是对的。Hack 数据网上找找应该有。

对于一个与 \(u\) 同层的结点,可能会出现这个结点与 \(u\) 的儿子交换点权后更优的情况。

对值域 \([1,n]\) 建出一棵线段树,同时定义 \(pos_{i}\) 为 \(\max\{j\mid a_{i}=a_{i+1}=\cdots=a_{j}\}\)。然后每次查找能用的个数不小于该结点子树大小的位置,有多解跑到最右边,然后把这个位置的能用个数减去子树大小。描述的不清楚,建议做代码阅读理解领略一下精神。

#include<bits/stdc++.h>
struct node
{
int mn,tag;
node(int A=0,int B=0)
{
mn=A;
tag=B;
}
}nodes[2000010];
std::vector<std::vector<int> > e;
int n,siz[500010],ans[500010];
double k;
void dfs(int x)
{
siz[x]=1;
for(int i=0;i<int(e[x].size());++i)
{
int y=e[x][i];
dfs(y);
siz[x]+=siz[y];
}
}
void build(int l,int r,int x)
{
if(l^r)
{
int mid=(l+r)>>1;
build(l,mid,x<<1);
build(mid+1,r,x<<1|1);
nodes[x].mn=std::min(nodes[x<<1].mn,nodes[x<<1|1].mn);
}
else nodes[x].mn=l;
}
void push_down(int x)
{
if(nodes[x].tag)
{
int &cur=nodes[x].tag;
nodes[x<<1].mn+=cur;
nodes[x<<1|1].mn+=cur;
nodes[x<<1].tag+=cur;
nodes[x<<1|1].tag+=cur;
cur=0;
}
}
void ins(int l,int r,int x,int fr,int ba,int delta)
{
if(l>ba || r<fr) return;
if(l>=fr && r<=ba)
{
nodes[x].mn+=delta;
nodes[x].tag+=delta;
}
else
{
int mid=(l+r)>>1;
push_down(x);
ins(l,mid,x<<1,fr,ba,delta);
ins(mid+1,r,x<<1|1,fr,ba,delta);
nodes[x].mn=std::min(nodes[x<<1].mn,nodes[x<<1|1].mn);
}
}
int find(int l,int r,int x,int d)
{
if(l^r)
{
int mid=(l+r)>>1;
push_down(x);
if(d<=nodes[x<<1|1].mn) return find(l,mid,x<<1,d);
else return find(mid+1,r,x<<1|1,d);
}
else return l+(nodes[x].mn<d);
}
int getDiv(int x,double k)
{
return int(std::floor(double(x)/k));
}
int main()
{
scanf("%d %lf",&n,&k);
e.resize(n+1);
std::vector<int> a(n+10),pos(n+10);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
std::sort(a.begin()+1,a.begin()+n+1,std::greater<int>());
for(int i=n-1;i;--i)
{
if(a[i]==a[i+1]) pos[i]=pos[i+1]+1;
}
for(int i=1;i<=n;++i) e[getDiv(i,k)].emplace_back(i);
dfs(0);
build(1,n,1);
for(int i=1;i<=n;++i)
{
if(getDiv(i,k)^getDiv(i-1,k)) ins(1,n,1,ans[getDiv(i,k)],n,siz[getDiv(i,k)]-1);
int tmp=find(1,n,1,siz[i]);
tmp+=pos[tmp];
++pos[tmp];
tmp-=pos[tmp]-1;
ans[i]=tmp;
ins(1,n,1,tmp,n,-siz[i]);
}
for(int i=1;i<=n;++i) printf("%d ",a[ans[i]]);
return 0;
}

Solution -「九省联考 2018」IIIDX的更多相关文章

  1. 「九省联考 2018」IIIDX 解题报告

    「九省联考 2018」IIIDX 这什么鬼题,送的55分要拿稳,实测有60? 考虑把数值从大到小摆好,每个位置\(i\)维护一个\(f_i\),表示\(i\)左边比它大的(包括自己)还有几个数可以选 ...

  2. loj2472 「九省联考 2018」IIIDX

    ref #include <algorithm> #include <iostream> #include <cstdio> using namespace std ...

  3. LOJ #2473. 「九省联考 2018」秘密袭击

    #2473. 「九省联考 2018」秘密袭击 链接 分析: 首先枚举一个权值W,计算这个多少个连通块中,第k大的数是这个权值. $f[i][j]$表示到第i个节点,有j个大于W数的连通块的个数.然后背 ...

  4. Loj #2479. 「九省联考 2018」制胡窜

    Loj #2479. 「九省联考 2018」制胡窜 题目描述 对于一个字符串 \(S\),我们定义 \(|S|\) 表示 \(S\) 的长度. 接着,我们定义 \(S_i\) 表示 \(S\) 中第 ...

  5. LOJ 2743(洛谷 4365) 「九省联考 2018」秘密袭击——整体DP+插值思想

    题目:https://loj.ac/problem/2473 https://www.luogu.org/problemnew/show/P4365 参考:https://blog.csdn.net/ ...

  6. [loj 2478][luogu P4843]「九省联考 2018」林克卡特树

    传送门 Description 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一 ...

  7. @loj - 2478@「九省联考 2018」林克卡特树

    目录 @description@ @solution@ @part - 1@ @part - 2@ @accepted code@ @details@ @description@ 小 L 最近沉迷于塞 ...

  8. 【LOJ】#2479. 「九省联考 2018」制胡窜

    题解 老了,国赛之前敲一个后缀树上LCT和线段树都休闲的很 现在后缀树上线段树合并差点把我写死 主要思路就是后缀树+线段树合并+容斥,我相信熟练的OIer看到这已经会了 但就是不想写 但是由于我过于老 ...

  9. LOJ#2471「九省联考 2018」一双木棋 MinMax博弈+记搜

    题面 戳这里 题解 因为每行取的数的个数是单调不增的,感觉状态数不会很多? 怒而记搜,结果过了... #include<bits/stdc++.h> #define For(i,x,y) ...

  10. Solution -「六省联考 2017」「洛谷 P3750」分手是祝愿

    \(\mathcal{Description}\)   Link.   有 \(n\) 盏编号为 \(1\sim n\),已知初始状态的灯,每次操作选取 \(x\in[1,n]\),使得所有编号为 \ ...

随机推荐

  1. 基于Elasticsearch 为电商提供商品数据大数据查询

    基于Elasticsearch 为电商提供商品数据大数据查询 前言 对于现代电商的产品,维度的多员花,与一套强大的搜索引擎,那是非常必要的.今天我们主要是描述我们在从事电商搜索引擎过程中的遇到的一些问 ...

  2. 常用的Java Enum JdbcType

    常用的Java Enum JdbcType ARRAY BIGINT BINARY BIT BLOB BOOLEAN CHAR CLOB CURSOR DATE DECIMAL DOUBLE FLOA ...

  3. C++面试八股文:什么是智能指针?

    某日二师兄参加XXX科技公司的C++工程师开发岗位第19面: 面试官:什么是智能指针? 二师兄:智能指针是C++11引入的类模板,用于管理资源,行为类似于指针,但不需要手动申请.释放资源,所以称为智能 ...

  4. idea设置字体大小(换主题后的字体大小设置)

    如果你是默认主题 直接这样设置字体大小 如果你换了自定义主题 如果你换了自定义主题,那么上面的设置方法会没有作用,我们需要像下面这样设置:

  5. 计算机网络那些事之 MTU 篇

    哈喽大家好,我是咸鱼 今天我们来聊聊计算机网络中的 MTU (Maximum Transmission Unit) 什么是 MTU ? MTU(Maximum Transmission Unit)是指 ...

  6. 记一次线上bug:crontab 被意外清空

    记一次线上bug:crontab 被意外清空 目录 记一次线上bug:crontab 被意外清空 问题概述 问题排查 问题复现 其他测试 总结 又是一次难忘的经历. 问题概述 同事反馈,某台服务器的c ...

  7. prometheus Histogram 统计原理

    大家好,我是蓝胖子,书接上文,我在prometheus描点原理那一篇文章里,留了一个思考题: 我们通常会用到histogram_quantile去计算服务接口时间的耗时情况. histogram_qu ...

  8. 使用C#编写.NET分析器(三)

    译者注 这是在Datadog公司任职的Kevin Gosse大佬使用C#编写.NET分析器的系列文章之一,在国内只有很少很少的人了解和研究.NET分析器,它常被用于APM(应用性能诊断).IDE.诊断 ...

  9. linux内核编译体验篇(一)

    文章目录 一. 准备环境 二. 获取内核源码 三. 交叉编译工具链的配置 1. 博友们常用安装方法链接 2. 公司常用的交叉工具链使用方法 四. 内核解压以及如何打补丁 五. 内核基本配置 1. 编译 ...

  10. 2023CCPC大学生程序设计竞赛-nhr

    新生菜菜第一次参加这种大型比赛,还是有点紧张的,CCPC我们队就A了三题,铜牌.第一道,以为是签到,然后就交给clk了,我和crf看下一道过的题比较多的,然后感觉是一个滑动窗口,另一道题是纯数学公式. ...