Pandas对象(数据结构)
Pandas是Python的一个扩展程序库,是在Numpy基础上建立的,提供高性能、易使用的数据结构和数据分析工具。
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Excel 等中导入数据;
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征;
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
Pandas对象(数据结构)
Pandas 三个基本的数据结构是 :Series (一维数据对象)、 DataFrame(二维数据对象)和 Index(标签对象)。Pandas数据对象可以看成增强版的Numpy数组,不过行列不仅仅只是简单的数据索引,还可以带上标签,是一种显式定义的索引,索引可以是重复的。
Series对象
Series对象是一个带索引数据构成的一维数组。
pandas.Series(data, index, dtype, name, copy)
参数说明:
data:一组数据(ndarray、字典、列表类型等)。
index:数据索引标签,如果不指定,默认从 0 开始。
dtype:数据类型,默认会自己判断。
name:设置名称。
copy:拷贝数据,默认为 False。
In [1]: import pandas as pd
#输入的数组可以是列表或Numpy数组,index默认整数序列
In [2]: data = pd.Series([0.3,0.05,1,30])
In [3]: data
Out[3]:
0 0.30
1 0.05
2 1.00
3 30.00
dtype: float64
In [4]: data.index #Series的索引是一个pd.Index类型对象
Out[4]: RangeIndex(start=0, stop=4, step=1)
In [5]: data[0] #和Numpy一样可以通过整数索引进行取值
Out[5]: 0.3
#添加显性索引,索引会覆盖顺序整数索引,但是两种索引方式都可用
In [8]: data = pd.Series([0.3,0.07,3,4],index=['a','b','c','d'])
In [9]: data
Out[9]:
a 0.30
b 0.07
c 3.00
d 4.00
dtype: float64
In [10]: data[1]
Out[10]: 0.07
In [11]: data['b']
Out[11]: 0.07
#添加显性整数索引,索引会覆盖原来顺序整数索引,原来的顺序整数索引不可用
In [12]: data = pd.Series([0.23,9,3,6],index=[2,7,3,9])
In [13]: data
Out[13]:
2 0.23
7 9.00
3 3.00
9 6.00
dtype: float64
In [14]: data[2]
Out[14]: 0.23
#输入一个字典,index默认为排序的key值
In [15]: population_dict = {'California': 3333333,
'Texas': 233242321,'New York': 43897653,
'Florida':32097644,'Illinois':2222229}
In [16]: population = pd.Series(population_dict)
In [17]: population
Out[17]:
California 3333333
Texas 233242321
New York 43897653
Florida 32097644
Illinois 2222229
dtype: int64
In [18]: population['Texas']
Out[18]: 233242321
#显性索引也具有切片功能
In [19]: population['California':'New York']
Out[19]:
California 3333333
Texas 233242321
New York 43897653
dtype: int64
#也可以输入一个标量,每个索引上都重复赋值
In [20]: pd.Series(3,index=['a','b','c'])
Out[20]:
a 3
b 3
c 3
dtype: int64
#筛选索引应用
In [21]: pd.Series({'a':1,'b':2,'c':3},index=['a','c'])
Out[21]:
a 1
c 3
dtype: int64
DataFrame对象
DataFrame对象可以看成是有序排列的若干Series对象,DataFrame除了有index属性外,还有columns属性。
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。
index:索引值,或者可以称为行标签。
columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
dtype:数据类型。
copy:拷贝数据,默认为 False。
#通过单个Series创建
In [22]: pd.DataFrame(population,columns=['population'])
Out[22]:
population
California 3333333
Texas 233242321
New York 43897653
Florida 32097644
Illinois 2222229
#通过字典列表创建,缺失值用NaN补充
In [23]: data = [{'a':i,'b':i**2} for i in range(5)]
In [24]: pd.DataFrame(data)
Out[24]:
a b
0 0 0
1 1 1
2 2 4
3 3 9
4 4 16
In [25]: pd.DataFrame([{'a':1,'b':2},
{'c':3,'b':4}])
Out[25]:
a b c
0 1.0 2 NaN
1 NaN 4 3.0
#通过Series对象字典创建
In [26]: area = pd.Series({'California': 3883333, 'Texas': 233771,'New York':435653,
'Florida':320644,'Illinois':2224429})
In [27]: area
Out[27]:
California 3883333
Texas 233771
New York 435653
Florida 320644
Illinois 2224429
dtype: int64
In [28]: population
Out[28]:
California 3333333
Texas 233242321
New York 43897653
Florida 32097644
Illinois 2222229
dtype: int64
In [29]: pd.DataFrame({'population':population,'area':area})
Out[29]:
population area
California 3333333 3883333
Texas 233242321 233771
New York 43897653 435653
Florida 32097644 320644
Illinois 2222229 2224429
#通过Numpy二维数组创建
In [30]: import numpy as np
In [31]: pd.DataFrame(np.random.rand(3,2),columns=['a','b'],index=['ff','dd','gg'])
Out[31]:
a b
ff 0.258254 0.591041
dd 0.091217 0.029136
gg 0.822554 0.661956
#通过Numpy结构化数组创建
In [32]: A = np.zeros(3,dtype=[('a','i8'),('b','f8')])
In [33]: A
Out[33]: array([(0, 0.), (0, 0.), (0, 0.)], dtype=[('a', '<i8'), ('b', '<f8')])
In [34]: pd.DataFrame(A)
Out[34]:
a b
0 0 0.0
1 0 0.0
2 0 0.0
Index对象
Series和DataFrame对象的显性索引其实是一个Index对象,可以看做一个不可变的数组或有序集合(元素可以重复)。
In [35]: ind = pd.Index([2,3,5,7])
In [36]: ind
Out[36]: Int64Index([2, 3, 5, 7], dtype='int64')
#可以像数组一样索引
In [37]: ind[1]
Out[37]: 3
In [38]: ind[::2]
Out[38]: Int64Index([2, 5], dtype='int64')
#与数组有相似的属性
In [40]: print(ind.size,ind.shape,ind.ndim,ind.dtype)
4 (4,) 1 int64
#可以进行数集运算
In [41]: indA = pd.Index([1,3,5,7,9])
In [42]: indB = pd.Index([2,3,5,7,8])
In [43]: indA & indB #交集
Out[43]: Int64Index([3, 5, 7], dtype='int64')
In [44]: indA | indB #并集
Out[44]: Int64Index([1, 2, 3, 5, 7, 8, 9], dtype='int64')
In [45]: indA ^ indB #异或
Out[45]: Int64Index([1, 2, 8, 9], dtype='int64')
Pandas对象(数据结构)的更多相关文章
- Pandas 的数据结构
Pandas的数据结构 导入pandas: 三剑客 from pandas import Series,DataFrame import pandas as pd import numpy as np ...
- pandas的数据结构之series
Pandas的数据结构 1.Series Series是一种类似于一维数组的对象,由下面两个部分组成: index:相关的数据索引标签 values:一组数据(ndarray类型) series的创建 ...
- Pandas之数据结构
pandas入门 由于最近公司要求做数据分析,pandas每天必用,只能先跳过numpy的学习,先学习大Pandas库 Pandas是基于Numpy构建的,让以Numpy为中心的应用变得更加简单 pa ...
- pandas 的数据结构(Series, DataFrame)
Pandas 讲解 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标 ...
- Pandas常用数据结构
Pandas 概述 Pandas(Python Data Analysis Library)是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数 ...
- pandas 学习 第1篇:pandas基础 - 数据结构和数据类型
pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引 ...
- pandas中数据结构-Series
pandas中数据结构-Series pandas简介 Pandas是一个开源的,BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Python与Pan ...
- Pandas的使用(3)---Pandas的数据结构
Pandas的使用(3) Pandas的数据结构 1.Series 2.DataFrame
- ES6中的Set和Map对象数据结构
set对象数据结构 构建某一类型的对象 -对象的实例化 let arr = [1, 2, 3, 3, 4, 5] let rec = new Set(arr)//可以传参数,数组或者对象 consol ...
- 02. Pandas 1|数据结构Series、Dataframe
1."一维数组"Series Pandas数据结构Series:基本概念及创建 s.index . s.values # Series 数据结构 # Series 是带有标签的一 ...
随机推荐
- 【Azure Function App】在ADF(Azure Data Factory)中调用 Azure Function 时候遇见 Failed to get MI access token
问题描述 在ADF(Azure Data Factory)中,调用Azure Function App中的Function,遇见了 Failed to get MI access token Ther ...
- 3.1蓝桥杯每日知识点,全排列permutation
next_permutation()函数 适用于生成当前序列的下一个排列 如果存在下一个排列,则将当前序列更改为下一个排列,并返回true 如果当前序列已经是最后一个排列,则将序列更改为第一个排列,并 ...
- 探索图片与Base64编码的优势与局限性
一.图片和Base64编码的关系: 图片是一种常见的媒体文件格式,可以通过URL进行访问和加载. Base64编码是一种将二进制数据转换为ASCII字符的编码方式,可以将图片数据转换为字符串形式. 图 ...
- MySql变量说明
1 #变量 2 /* 3 系统变量: 4 全局变量 5 会话变量 6 7 自定义变量: 8 用户变量 9 局部变量 10 11 */ 12 #一.系统变量 13 /* 14 说明:变量由系统定义,不是 ...
- ansible 自动化运维(2)
回到顶部 Ansible playbook 简介 playbook 是 ansible 用于配置,部署,和管理被控节点的剧本. 通过 playbook 的详细描述,执行其中的一系列 tasks ,可以 ...
- RocketMQ为什么这么快?我从源码中扒出了10大原因!
大家好,我是三友~~ RocketMQ作为阿里开源的消息中间件,深受广大开发者的喜爱 而这其中一个很重要原因就是,它处理消息和拉取消息的速度非常快 那么,问题来了,RocketMQ为什么这么快呢? 接 ...
- ThinkPHP 3.2.3
说明手册 https://www.kancloud.cn/manual/thinkphp/1706 下载地址 https://gitee.com/liu21st/thinkphp32 thinkPHP ...
- 记本地新建一个gradle方式springboot项目过程
打算使用gradle在idea新建个springboot项目,然后坑很多,记录一下 原来我的idea应该是社区版,新建项目时候没有可以选择spring相关配置,然后卸载了重装,之前问题是启动是启动起来 ...
- 精通 Grails: 用 Groovy 服务器页面(GSP)改变视图
Groovy 服务器页面(Groovy Server Pages,GSP)将 Web 置于 Grails Web 框架之内.在 精通 Grails 系列的第三期中,Scott Davis 介绍了如何使 ...
- 记录--P0事故预警
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 背景 某一天,前端小余同学和后端别问我小哥在做登录业务接口对接,出于业务的特殊性和安全性的考虑,她和后端小哥约定"user&qu ...