Elasticsearch之索引简单应用
本篇所有操作都在 Kibana 上执行
创建第一个索引
PUT product
{
// 索引设置
"settings": {
// 分片数量
"number_of_shards": 3,
// 副本数量
"number_of_replicas": 1
},
// 索引字段映射
"mappings": {
// 字段属性
"properties": {
// 商品名称
"name":{
// 字段类型为文本
"type":"text"
},
// 商品标签
"label":{
"type":"keyword"
},
"price":{
"type": "scaled_float",
// 比例因子设置为100 在ES中会按分存储
// 注意:scaling_factor属性是只针对scaled_float这个数据类型才有
"scaling_factor": 100
},
// 商品状态
"status":{
"type":"integer"
},
// 创建日期
"create_date":{
"type":"date"
}
}
}
}
执行命令,我们会得到如下返回信息,表示创建成功
{
"acknowledged": true,
"shards_acknowledged": true,
"index": "product"
}
查看指定索引结构
获取索引全部信息:
## 命令格式 GET {索引名称}
GET product
返回结果:
{
"product": {
"aliases": {},
"mappings": {
"properties": {
"create_date": {
"type": "date"
},
"label": {
"type": "keyword"
},
"name": {
"type": "text"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
},
"status": {
"type": "integer"
}
}
},
"settings": {
"index": {
"routing": {
"allocation": {
"include": {
"_tier_preference": "data_content"
}
}
},
"number_of_shards": "3",
"provided_name": "product",
"creation_date": "1693981437123",
"number_of_replicas": "1",
"uuid": "awfrhothQaeoL2bHvufN5w",
"version": {
"created": "8090199"
}
}
}
}
}
查看索引 Mapping 信息
GET product/_mapping
返回结果:
{
"product": {
"mappings": {
"properties": {
"create_date": {
"type": "date"
},
"label": {
"type": "keyword"
},
"name": {
"type": "text"
},
"price": {
"type": "scaled_float",
"scaling_factor": 100
},
"status": {
"type": "integer"
}
}
}
}
}
查看索引 settings 信息
GET product/_settings
返回结果:
{
"product": {
"settings": {
"index": {
"routing": {
"allocation": {
"include": {
"_tier_preference": "data_content"
}
}
},
"number_of_shards": "3",
"provided_name": "product",
"creation_date": "1693981437123",
"number_of_replicas": "1",
"uuid": "awfrhothQaeoL2bHvufN5w",
"version": {
"created": "8090199"
}
}
}
}
查看索引 aliases 信息
GET product/_alias
返回结果:
{
"product": {
"aliases": {}
}
}
目前我们没设置别名,所以返回为空
新增索引数据--文档
单个新增
语法:
PUT {索引名}/_doc/{文档id}
{
{字段名}:{字段值/]
}
实例:
PUT product/_doc/1
{
"name":"篮球",
"label":["运动","球类"],
"price":33.5,
"status":0,
"create_date":"2023-08-08T13:00:00"
}
执行成功将返回:
{
"_index": "product",
"_id": "1",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1
}
批量新增
语法:
POST _bulk
{ action: { metadata }}
{ request body }
{ action: { metadata }}
{ request body }
注:bulk对 JSON 串的有着严格的要求。每个 JSON 串不能换行,只能放在同一行,同时,相邻的 JSON 串之间必须要有换行(delete语法除外).
实例:
POST _bulk
{"create":{"_index":"product","_id":2}}
{"name":"足球","label":["运动","球类"],"price":60.3,"status":0,"create_date":"2023-08-09T13:00:00"}
{"create":{"_index":"product","_id":3}}
{"name":"华为手机","label":["数码","手机"],"price":6999,"status":0,"create_date":"2023-08-31T13:00:00"}
{"create":{"_index":"product","_id":4}}
{"name":"苹果","label":["数码","手机"],"price":9999,"status":1,"create_date":"2023-08-31T13:00:00"}
返回结果:
{
"took": 6,
"errors": false,
"items": [
{
"create": {
"_index": "product",
"_id": "2",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 0,
"_primary_term": 1,
"status": 201
}
},
{
"create": {
"_index": "product",
"_id": "3",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 1,
"_primary_term": 1,
"status": 201
}
},
{
"create": {
"_index": "product",
"_id": "4",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"_seq_no": 2,
"_primary_term": 1,
"status": 201
}
}
]
}
查询索引数据--文档
查询所有
GET product/_search
{
"query": {
"match_all": {}
}
}
返回
{
"took": 9,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 4,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "product",
"_id": "2",
"_score": 1,
"_source": {
"name": "足球",
"label": [
"运动",
"球类"
],
"price": 60.3,
"status": 0,
"create_date": "2023-08-09T13:00:00"
}
},
{
"_index": "product",
"_id": "3",
"_score": 1,
"_source": {
"name": "华为手机",
"label": [
"数码",
"手机"
],
"price": 6999,
"status": 0,
"create_date": "2023-08-31T13:00:00"
}
},
{
"_index": "product",
"_id": "4",
"_score": 1,
"_source": {
"name": "苹果手机",
"label": [
"数码",
"手机"
],
"price": 9999,
"status": 1,
"create_date": "2023-09-01T13:00:00"
}
},
{
"_index": "product",
"_id": "1",
"_score": 1,
"_source": {
"name": "篮球",
"label": [
"运动",
"球类"
],
"price": 33.5,
"status": 0,
"create_date": "2023-08-08T13:00:00"
}
}
]
}
}
响应的数据结果分为两部分:
{
----------------first part:分片副本信息--------------------
"took": 9,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
---------------second part:查询的数据集---------------------
"hits": {
"total": {
"value": 4,
"relation": "eq"
},
"max_score": 1,
"hits": [{}]
}
}
查询标签带手机的商品
GET product/_search
{
"query": {
"match": {
"label": "手机"
}
}
}
返回:
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 0.5908618,
"hits": [
{
"_index": "product",
"_id": "3",
"_score": 0.5908618,
"_source": {
"name": "华为手机",
"label": [
"数码",
"手机"
],
"price": 6999,
"status": 0,
"create_date": "2023-08-31T13:00:00"
}
},
{
"_index": "product",
"_id": "4",
"_score": 0.5908618,
"_source": {
"name": "苹果手机",
"label": [
"数码",
"手机"
],
"price": 9999,
"status": 1,
"create_date": "2023-09-01T13:00:00"
}
}
]
}
}
过滤状态为0的
GET product/_search
{
"query": {
"bool": {
"must": {
"match": {
"label": "手机"
}
},
"filter": {
"term": {
"status": 0
}
}
}
}
}
返回结果:
{
"took": 0,
"timed_out": false,
"_shards": {
"total": 3,
"successful": 3,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 1,
"relation": "eq"
},
"max_score": 0.5908618,
"hits": [
{
"_index": "product",
"_id": "3",
"_score": 0.5908618,
"_source": {
"name": "华为手机",
"label": [
"数码",
"手机"
],
"price": 6999,
"status": 0,
"create_date": "2023-08-31T13:00:00"
}
}
]
}
}
查询结果里面都有一个 _score
字段,一般 Elasticsearch 根据相关评分排序,相关评分是根据文档与语句的匹配度来得出, _score
值越高说明匹配度越高。相关性(relevance)概念在Elasticsearch中非常重要,而这也是它与传统关系型数据库中记录只有匹配和不匹配概念最大的不同。
Elasticsearch之索引简单应用的更多相关文章
- ElasticSearch+Kibana 索引操作
ElasticSearch+Kibana 索引操作 一 前言 ElasticiSearch 简介 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引 ...
- 《读书报告 -- Elasticsearch入门 》--简单使用(2)
<读书报告 – Elasticsearch入门 > ' 第四章 分布式文件存储 这章的主要内容是理解数据如何在分布式系统中存储. 4.1 路由文档到分片 创建一个新文档时,它是如何确定应该 ...
- ELK学习笔记之ElasticSearch的索引详解
0x00 ElasticSearch的索引和MySQL的索引方式对比 Elasticsearch是通过Lucene的倒排索引技术实现比关系型数据库更快的过滤.特别是它对多条件的过滤支持非常好,比如年龄 ...
- Spring Boot + Elasticsearch 实现索引的日常维护
全文检索的应用越来越广泛,几乎成了互联网应用的标配,商品搜索.日志分析.历史数据归档等等,各种场景都会涉及到大批量的数据,在全文检索方面,方案无外乎Lucene.Solr.Elasticsearch三 ...
- Spring Boot + Elasticsearch 实现索引批量写入
在使用Eleasticsearch进行索引维护的过程中,如果你的应用场景需要频繁的大批量的索引写入,再使用上篇中提到的维护方法的话显然效率是低下的,此时推荐使用bulkIndex来提升效率.批写入数据 ...
- lucene创建索引简单示例
利用空闲时间写了一个使用lucene创建索引简单示例, 1.使用maven创建的项目 2.需要用到的jar如下: 废话不多说,直接贴代码如下: 1.创建索引的类(HelloLucene): packa ...
- ES 10 - Elasticsearch的索引别名和索引模板
目录 1 索引模板概述 1.1 什么是索引模板 1.2 索引模板中的内容 1.3 索引模板的用途 2 创建索引模板 3 查看索引模板 4 删除索引模板 5 模板的使用建议 5.1 一个index中不能 ...
- elasticsearch的索引操作和文档操作总结
参考文档:https://es.xiaoleilu.com/010_Intro/00_README.html 一.索引操作 1.查看当前节点的所有的index 查看当前节点的所有的index [roo ...
- elasticsearch的索引自动清理及自定义清理
近发现elasticsearch近期索引文件大的吓人,清理了下之前的索引文件,发现服务器性能大大的减轻了一半,想一直保留近一个月的索引文件,但是又不想每个月手动清楚,在此写了一个小脚本 查询索引: c ...
- elasticsearch删除索引报错【原】
如果elasticsearch删除索引报错 curl -X DELETE 'http://10.73.26.66:9200/httpd-34-2017.08.15' {"error" ...
随机推荐
- odoo开发教程五:高级视图
树视图 tree视图表现出来是列表视图,列表中一行一纪录.可以根据每行纪录的某字段值不同而把每行以不同样式显示. decoration-{样式}="条件" 样式主要有: bf(fo ...
- Java发展史、JDK环境配置、运行原理及开发工具(学习的前期准备)
一.Java的历史和三大版本 1.Java的发展史 Java由sun公司开发,Java之父James Gosling,Java是一门面向对象的编程语言,也称为"高级编程语言" Ja ...
- 利用jira及confluence的API进行批量操作(查找/更新/导出/备份/删除等)
前言: 近期因为某些原因需要批量替换掉 jira 和 confluence中的特定关键字,而且在替换前还希望进行备份(以便后续恢复)和导出(方便查看)atlassian官方的api介绍文档太简陋,很多 ...
- 曲线艺术编程 coding curves 第十章 螺旋曲线(SPIRALS)
原作:Keith Peters https://www.bit-101.com/blog/2022/11/coding-curves/ 译者:池中物王二狗(sheldon) 源码:github: ht ...
- Microsoft Azure中用户注册、应用注册、授权
背景 利用Microsoft Azure中令牌授予流读取登录用户信息(UserInfo),实现应用的单点登录: 1. 用户注册 此处用户注册,可以理解为一个管理员级别的用户注册: 点击注册:Azure ...
- 什么是ORM (object real mapping)
一.ORM简介 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术.简单的说,ORM是通过使用 ...
- Nacos服务发现与注册源码剖析
为什么要看源码: 1.提升技术功底:学习源码里的优秀设计思想,比如一些疑难问题的解决思路,还有一些优秀的设计模式,整体提升自己的技术功底2.深度掌握技术框架:源码看多了,对于一个新技术或框架的掌握速度 ...
- AutoreleasePool 的总结
1.创建和释放时机问题 App启动后,苹果在主线程 RunLoop 里注册了两个 Observer,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler(). 第一 ...
- 2023年郑州轻工业大学校赛邀请赛jc
比赛时,jxh和myh从头开始看题,我拿着试题册去找签到,很快他们签上了一个数学题,我跟他们说兔子和飞镖可以写,刚开始飞镖这个题我先wa了一次,因为刚开始的思路少考虑了情况,我们队后来改的挺乱,jxh ...
- 私网部署DNS(BIND)笔记
准备工作 下载 yum install -y bind bind-utils包含dig.nslookup等调试命令,非必须. yum install -y bind-utils 防火墙 firewal ...