hanoi(n,x,y,z)

{

hanoi(n-1,x,z,y);//n-1 from x to y

move(x,z);//x->z

hanoi(n-1,y,x,z);//n-1 from y to z

}

hanoi(n-1,x,z,y)

{

hanoi(n-2,x,y,z);//n-2 from x to z

move(x,y);//n-1 from x to y

hanoi(n-2,z,x,y);//n-2 from z to y

}

the step move(x,y)  is what  you must do to realize hanoi(n-2,x,y,z),at last ,the last step will meet the first step that you can implement easily,this is the deepest I can comprehend

//11072013 add

对hanoi T的印象从大二接触C语言开始

其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n – 1(有兴趣的可以自己证明试试看)。后来一位美国学者发现一种出人//摘自百度

#include <stdio.h>
#define N 2 //N disks on original pillar void hanoi(char src, char mid, char dst, int n)
{
if (n == 1)
{
printf("Move disk %d from %c to %c\n", n, src, dst);
}
else {
hanoi(src, dst, mid, n - 1);
printf("Move disk %d from %c to %c\n", n, src, dst);
hanoi(mid, src, dst, n - 1);
}
} int main(void)
{
hanoi('A', 'B', 'C', N);
return 0;
}

借鉴了其他人的思路,总算稍微理解了上述算法的实现,整理步骤要点

the fact is that wo don't konw how to do but konw wo must do,and push to opration to the stack memory until we move the topest disk  to Z

a)step befor moving n to Z,the case is 1 to n-1 are on Y,the mothed is move n to Z,push the opration//the last opration

b)the last second situation is 1 to n-2 are on X,the mothed is move n-1 to Z,push the opration//second last opration

d)it is ease to see the first step is move n-(n-1) to X or Y

a and b is what we must do,and we have no other choices,but what has hanppend bettwen b and c,the stack has store all the oprations wo must do until c

assume the function can move 1 to n-1 to X or Y, so it can move 1 to n-2 to X or Y,and so on n-(n-1) to X or Y,it is easy to move n-(n-1) to X or Y

the reverse order you or the functon you build may implement,

e)n-1 disks on Y,put n on Z//after that,you can omit n on Z

f)n-2 disks on X,n-1 on Y//put the n-1 on Z,the question return to a,so a and b is the whole task need to resolve

****the last situation is 2 disks on X or Y

the whole steps is like ,if 1 OK,then 2OK;if 2 OK,then 3 OK

个人感悟:1,有时候踢皮球也是一种办法,此处是往上踢,有点默认路由的味道,没有别的选择

     2,当你身处多级环境中,而且视野范围有限的情况下,只能虚构方法,即使不知道方法是怎么实现

3,the original case only permit taking one disk once,but it does't conflact with the step e and f,e and f is the situation we need implement but the mothed we use.The mothed is very simple,anyone can see directly,we image the situation first ,here the mothed is not the point

4,let the stack store the opration but not your head

5,用递归证明可以实现,用反证证明只有一种方式

Hanoi T note的更多相关文章

  1. Codeforces777E. Hanoi Factory 2017-05-04 18:10 42人阅读 评论(0) 收藏

    E. Hanoi Factory time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  2. Python学习札记(十四) Function4 递归函数 & Hanoi Tower

    reference:递归函数 Note 1.在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数. eg.计算阶乘: #!/usr/bin/env python3 def ...

  3. codeforces-777E Hanoi Factory (栈+贪心)

    题目传送门 题目大意: 现在一共有N个零件,如果存在:bi>=bj&&bj>ai的两个零件i,j,那么此时我们就可以将零件j放在零件i上.我们现在要组成一个大零件,使得高度 ...

  4. poj 1920 Towers of Hanoi

    Towers of Hanoi Time Limit: 3000MS   Memory Limit: 16000K Total Submissions: 2213   Accepted: 986 Ca ...

  5. zoj 2954 Hanoi Tower

    Hanoi Tower Time Limit: 2 Seconds Memory Limit: 65536 KB You all must know the puzzle named "Th ...

  6. Codeforces 777E:Hanoi Factory(贪心)

    Of course you have heard the famous task about Hanoi Towers, but did you know that there is a specia ...

  7. 三星Note 7停产,原来是吃了流程的亏

    三星Note 7发售两个月即成为全球噩梦,从首炸到传言停产仅仅47天.所谓"屋漏偏逢连天雨",相比华为.小米等品牌对其全球市场的挤压.侵蚀,Galaxy Note 7爆炸事件这场连 ...

  8. 《Note --- Unreal --- MemPro (CONTINUE... ...)》

    Mem pro 是一个主要集成内存泄露检测的工具,其具有自身的源码和GUI,在GUI中利用"Launch" button进行加载自己待检测的application,目前支持的平台为 ...

  9. 《Note --- Unreal 4 --- Sample analyze --- StrategyGame(continue...)》

    ---------------------------------------------------------------------------------------------------- ...

随机推荐

  1. ThinkPHP 3.2 版本升级了哪些内容

    ThinkPHP 3.2 版本升级了哪些内容           ThinkPHP 3.2发布了挺长时间了,这里也总结下这次ThinkPHP 3.2到底发生了哪些变化,方便程序员们进行开发. 前言 T ...

  2. $().html(value) vs $().empty().append(value)

    当需要清空某个dom结点内容时,我所知道的有两种方法: 1.Element.removeChild(child) // Removing all children from an element va ...

  3. git 解决冲突

    $ git push origin master To /home/fan/repo/code/../a.git/ ! [rejected] master -> master (fetch fi ...

  4. 【转】UGUI实现unity摇杆

    http://blog.csdn.net/onafioo/article/details/46403801 http://www.winig.cc/archives/348 好久没有写文章了,最近在做 ...

  5. android硬件调试之无法识别android设备解决办法

    DDMS 中无法识别华为荣耀六手机,  用豌豆荚开始显示无法连接,  用豌豆荚安装完驱动后,就可以连接了 http://www.zhihu.com/question/30588024 http://w ...

  6. 一个Delphi7的BUG

    combobox有个属性DropDownCount可以控制显示的下拉数量, 但是 在Delphi7中, TCombobox或者任何从TCustomComboBox继承下来的类, 在windows7环境 ...

  7. Java科普之加密算法

    本文来自http://blog.csdn.net/liuxian13183/ ,引用必须注明出处! 加密比较复杂,但今天公司有需求,就稍微再研究一下,方式只有两种,对称加密和非对称加密.对称加密是指加 ...

  8. HDFS中高可用性HA的讲解

    HDFS Using QJM HA使用的是分布式的日志管理方式 一:概述 1.背景 如果namenode出现问题,整个HDFS集群将不能使用. 是不是可以有两个namenode呢 一个为对外服务-&g ...

  9. android部分机型(HTC D610) menu键的显示问题

    今天遇到了一个很恶心的问题... htc某些机器的menu键是在屏幕里的,可以由系统控制显示和隐藏.今天遇到了一个问题,有两个应用,一个运行后显示menu键,另一个不显示... 找了好一会儿,发现是  ...

  10. android Listview item 中有button,item就不响应触摸事件

    为button设置 beanButton.getButton().setFocusable(false); beanButton.getButton().setFocusableInTouchMode ...