The Doors

Time Limit: 1000 MS Memory Limit: 10000 KB

64-bit integer IO format: %I64d , %I64u   Java class name: Main

[Submit] [Status] [Discuss]

Description

You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length. 

Input

The input data for the illustrated chamber would appear as follows.
2  4 2 7 8 9  7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

Output

The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

Sample Input

1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1

Sample Output

10.00
10.06
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <cmath> using namespace std;
#define maxx 100
#define INF 10000000 struct Node
{
double x;
double y;
} p[maxx]; ///每扇门的终点 起点 和门的两个端点的平面坐标 struct EDGE
{
int u;
int v;
} Edge[maxx*maxx]; ///存构造的边 因为之前是孤立的点 int n; ///n个墙
double wX[]; ///输入每堵墙的横坐标
double py[][]; ///每堵墙横坐标对应的纵坐标 0 1 2 3 double g[maxx][maxx]; ///存邻接矩阵 配合dis[]的
double dis[maxx]; ///beg到其他点的最短距离 int Psize; ///边的数量
int Esize; ///点的数量 double Dis(Node a,Node b) ///计算亮点之间的距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double cross(double x1,double y1,double x2,double y2,double x3,double y3) ///判断(x3,y3)与(x1,y1)(x2,y2)是否交叉
{
return (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
} bool IsOk(Node a,Node b) ///判断两点之间是否可以连线
{
if(a.x>=b.x)
return false;
bool falg=true;
int i=;
while(wX[i]<=a.x&&i<n)
i++;
while(wX[i]<b.x&&i<n)
{
if(cross(a.x,a.y,b.x,b.y,wX[i],)*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*(cross(a.x,a.y,b.x,b.y,wX[i],))<)
{
falg=false;
break;
}
i++;
}
return falg;
} double Bellman(int beg,int end)
{
for(int i=;i<maxx;i++)
dis[i]=INF;
dis[beg]=;
bool EX=true;
for(int i=;i<=Psize&&EX;i++)
{
EX=false;
for(int j=;j<Esize;j++)
{
if(dis[Edge[j].u]<INF&&dis[Edge[j].v]>(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]))
{
dis[Edge[j].v]=(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]);
EX=true;
}
}
}
return dis[end];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==-)
break;
p[].x=;
p[].y=;
Psize=;
for(int i=; i<n; i++)
{
cin>>wX[i];
for(int j=; j<; j++)
{
p[Psize].x=wX[i];
cin>>p[Psize].y;
py[i][j]=p[Psize].y;
Psize++;
}
}
p[Psize].x=;
p[Psize].y=;
for(int i=; i<=Psize; i++)
{
for(int j=; j<=Psize; j++)
{
g[i][j]==INF;
}
}
Esize=;
for(int i=; i<=Psize; i++)
{
for(int j=i+; j<=Psize; j++)
{
if(IsOk(p[i],p[j]))
{
g[i][j]=Dis(p[i],p[j]);
Edge[Esize].u=i;
Edge[Esize].v=j;
Esize++;
}
}
}
printf("%.2lf\n",Bellman(,Psize));
}
return ;
}

poj 1556 The Doors的更多相关文章

  1. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  2. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  3. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  4. POJ 1556 The Doors(线段交+最短路)

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5210   Accepted: 2124 Descrip ...

  5. poj 1556 The Doors(线段相交,最短路)

      The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7430   Accepted: 2915 Descr ...

  6. POJ 1556 The Doors 线段判交+Dijkstra

    The Doors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6734   Accepted: 2670 Descrip ...

  7. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

  8. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  9. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

随机推荐

  1. FORM触发器执行顺序

    触发器执行顺序: 1. 当打开FORM时: (1) PRE-FORM (2) PRE-BLOCK(BLOCK级) (3) WHEN-NEW-FORM-INSTANCE (4) WHEN-NEW-BLO ...

  2. 自动化(Automation)兼容的数据类型

    自动化(Automation)兼容的数据类型    

  3. Python 2.7_Second_try_爬取阳光电影网_获取电影下载地址并写入文件 20161207

    1.昨天文章http://www.cnblogs.com/Mr-Cxy/p/6139705.html 是获取电影网站主菜单 然后获取每个菜单下的电影url  2.今天是对电影url 进行再次解析获取下 ...

  4. 锋利的js之妈妈再也不用担心我找错钱了

    用js实现收银功能. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <hea ...

  5. 万象客户端设置服务端ip保存在注册表的位置

    HKEY_LOCAL_MACHINE\SOFTWARE\Sicent\wx2004Clt 这个注册表被保护了,不能修改和删除,但可以在安全模式操作.

  6. VC++ 将IP字符串转为 DWORD值

    CString strIP="192.168.1.184"; DWORD dwAddress= ntohl( inet_addr(strIP)); m_IPAddr.SetAddr ...

  7. jquery 根据年 月设置报表表头

    function setTblHeadr(thisTime){ $("#datatable_ajax1 thead").empty(); //获取星期 var weekday=ne ...

  8. Linux课程实践一:Linux基础实践(基础操作)

    一.软件源维护 1. 基本操作 (1)查看源列表 sudo vim /etc/apt/sources.list deb:二进制软件安装包 deb-src:源码包 (2)备份软件源列表 sudo cp ...

  9. DIOCP之DEMO-登陆验证设计(二)

    ECHOServer代码(不考虑粘包的处理): unit ufrmMain; interface uses Windows, Messages, SysUtils, Variants, Classes ...

  10. spring集成freemaker 制作短信模板

    1.配置configure的Bean,Bean中指定了模板文件的路径和刷新时间等配置. <!-- 配置freeMarkerConfigurer进行属性值的注入 --> <bean i ...