poj 1556 The Doors
The Doors
Time Limit: 1000 MS Memory Limit: 10000 KB
64-bit integer IO format: %I64d , %I64u Java class name: Main
Description
Input
2 4 2 7 8 9 7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.
Output
Sample Input
1
5 4 6 7 8
2
4 2 7 8 9
7 3 4.5 6 7
-1
Sample Output
10.00
10.06
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <cmath> using namespace std;
#define maxx 100
#define INF 10000000 struct Node
{
double x;
double y;
} p[maxx]; ///每扇门的终点 起点 和门的两个端点的平面坐标 struct EDGE
{
int u;
int v;
} Edge[maxx*maxx]; ///存构造的边 因为之前是孤立的点 int n; ///n个墙
double wX[]; ///输入每堵墙的横坐标
double py[][]; ///每堵墙横坐标对应的纵坐标 0 1 2 3 double g[maxx][maxx]; ///存邻接矩阵 配合dis[]的
double dis[maxx]; ///beg到其他点的最短距离 int Psize; ///边的数量
int Esize; ///点的数量 double Dis(Node a,Node b) ///计算亮点之间的距离
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} double cross(double x1,double y1,double x2,double y2,double x3,double y3) ///判断(x3,y3)与(x1,y1)(x2,y2)是否交叉
{
return (x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
} bool IsOk(Node a,Node b) ///判断两点之间是否可以连线
{
if(a.x>=b.x)
return false;
bool falg=true;
int i=;
while(wX[i]<=a.x&&i<n)
i++;
while(wX[i]<b.x&&i<n)
{
if(cross(a.x,a.y,b.x,b.y,wX[i],)*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*cross(a.x,a.y,b.x,b.y,wX[i],py[i][])<
||cross(a.x,a.y,b.x,b.y,wX[i],py[i][])*(cross(a.x,a.y,b.x,b.y,wX[i],))<)
{
falg=false;
break;
}
i++;
}
return falg;
} double Bellman(int beg,int end)
{
for(int i=;i<maxx;i++)
dis[i]=INF;
dis[beg]=;
bool EX=true;
for(int i=;i<=Psize&&EX;i++)
{
EX=false;
for(int j=;j<Esize;j++)
{
if(dis[Edge[j].u]<INF&&dis[Edge[j].v]>(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]))
{
dis[Edge[j].v]=(dis[Edge[j].u]+g[Edge[j].u][Edge[j].v]);
EX=true;
}
}
}
return dis[end];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
if(n==-)
break;
p[].x=;
p[].y=;
Psize=;
for(int i=; i<n; i++)
{
cin>>wX[i];
for(int j=; j<; j++)
{
p[Psize].x=wX[i];
cin>>p[Psize].y;
py[i][j]=p[Psize].y;
Psize++;
}
}
p[Psize].x=;
p[Psize].y=;
for(int i=; i<=Psize; i++)
{
for(int j=; j<=Psize; j++)
{
g[i][j]==INF;
}
}
Esize=;
for(int i=; i<=Psize; i++)
{
for(int j=i+; j<=Psize; j++)
{
if(IsOk(p[i],p[j]))
{
g[i][j]=Dis(p[i],p[j]);
Edge[Esize].u=i;
Edge[Esize].v=j;
Esize++;
}
}
}
printf("%.2lf\n",Bellman(,Psize));
}
return ;
}
poj 1556 The Doors的更多相关文章
- POJ 1556 - The Doors 线段相交不含端点
POJ 1556 - The Doors题意: 在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少. 分析: 要么直达,要么 ...
- POJ 1556 The Doors 线段交 dijkstra
LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...
- POJ 1556 - The Doors - [平面几何+建图spfa最短路]
题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...
- POJ 1556 The Doors(线段交+最短路)
The Doors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5210 Accepted: 2124 Descrip ...
- poj 1556 The Doors(线段相交,最短路)
The Doors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7430 Accepted: 2915 Descr ...
- POJ 1556 The Doors 线段判交+Dijkstra
The Doors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6734 Accepted: 2670 Descrip ...
- POJ 1556 The Doors【最短路+线段相交】
思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...
- POJ 1556 The Doors --几何,最短路
题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...
- 简单几何(线段相交+最短路) POJ 1556 The Doors
题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...
随机推荐
- FORM触发器执行顺序
触发器执行顺序: 1. 当打开FORM时: (1) PRE-FORM (2) PRE-BLOCK(BLOCK级) (3) WHEN-NEW-FORM-INSTANCE (4) WHEN-NEW-BLO ...
- 自动化(Automation)兼容的数据类型
自动化(Automation)兼容的数据类型
- Python 2.7_Second_try_爬取阳光电影网_获取电影下载地址并写入文件 20161207
1.昨天文章http://www.cnblogs.com/Mr-Cxy/p/6139705.html 是获取电影网站主菜单 然后获取每个菜单下的电影url 2.今天是对电影url 进行再次解析获取下 ...
- 锋利的js之妈妈再也不用担心我找错钱了
用js实现收银功能. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <hea ...
- 万象客户端设置服务端ip保存在注册表的位置
HKEY_LOCAL_MACHINE\SOFTWARE\Sicent\wx2004Clt 这个注册表被保护了,不能修改和删除,但可以在安全模式操作.
- VC++ 将IP字符串转为 DWORD值
CString strIP="192.168.1.184"; DWORD dwAddress= ntohl( inet_addr(strIP)); m_IPAddr.SetAddr ...
- jquery 根据年 月设置报表表头
function setTblHeadr(thisTime){ $("#datatable_ajax1 thead").empty(); //获取星期 var weekday=ne ...
- Linux课程实践一:Linux基础实践(基础操作)
一.软件源维护 1. 基本操作 (1)查看源列表 sudo vim /etc/apt/sources.list deb:二进制软件安装包 deb-src:源码包 (2)备份软件源列表 sudo cp ...
- DIOCP之DEMO-登陆验证设计(二)
ECHOServer代码(不考虑粘包的处理): unit ufrmMain; interface uses Windows, Messages, SysUtils, Variants, Classes ...
- spring集成freemaker 制作短信模板
1.配置configure的Bean,Bean中指定了模板文件的路径和刷新时间等配置. <!-- 配置freeMarkerConfigurer进行属性值的注入 --> <bean i ...