矩阵乘法快速幂 codevs 1574 广义斐波那契数列
codevs 1574 广义斐波那契数列
广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。
输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。
输出包含一行一个整数,即an除以m的余数。
1 1 1 1 10 7
6
数列第10项是55,除以7的余数为6。
/*
注意:矩阵快速幂是把构造的矩阵乘^n次(根据同余原理,计算中是可以%的)后,再与原矩阵想乘,把原矩阵做n次快速幂是错误的*/
/*
联系一下int的快速幂:
ans=1;
while(n)//求b^n
{
if(n&1)
ans=ans*b;-------1
n>>=1;
b=b*b;---------2
}
就是把1,2两句中的相乘都用“三变量法”来做(矩阵的特殊性,不能把结果直接存进原矩阵中)。
*/
#include<iostream>
using namespace std;
#include<cstdio>
typedef long long ll;
ll n,m;
ll p,q,a1,a2;
ll jz[][],b[][],c[][];/*注意以后遇到ll与int相乘的题目,把int的变量直接设为ll*/
int main()
{
cin>>p>>q>>a1>>a2;
cin>>n>>m;n-=;
b[][]=jz[][]=;b[][]=jz[][]=q;
b[][]=jz[][]=;b[][]=jz[][]=p; while(n)
{
if(n&)
{
for(int i=;i<=;++i)
for(int j=;j<=;++j)
for(int k=;k<=;++k)
c[i][j]=(c[i][j]+jz[i][k]*b[k][j]%m)%m;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
jz[i][j]=c[i][j],c[i][j]=;
}
n>>=;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
for(int k=;k<=;++k)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%m)%m;
for(int i=;i<=;++i)
for(int j=;j<=;++j)
b[i][j]=c[i][j],c[i][j]=;
} cout<<(a2*jz[][]%m+a1*jz[][]%m)%m;/*注意这里要把a1,a2乘以原来的那个01向量,而不是pq向量,因为矩阵计算了n-2次,如果乘以pq向量的话,计算出的是an+1*/
return ;
}
矩阵乘法快速幂 codevs 1574 广义斐波那契数列的更多相关文章
- Codevs 1574 广义斐波那契数列(矩阵乘法)
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...
- (矩阵快速幂)51NOD 1242斐波那契数列的第N项
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, ...
- 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列
[题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...
- codevs1574广义斐波那契数列
1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p* ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
- 洛谷P1349 广义斐波那契数列(矩阵快速幂)
P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
- 洛谷——P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...
随机推荐
- DistributedCache小记
一.DistributedCache简介 DistributedCache是hadoop框架提供的一种机制,可以将job指定的文件,在job执行前,先行分发到task执行的机器上,并有相关机制对cac ...
- nginx配合modsecurity实现WAF功能
一.准备工作 系统:centos 7.2 64位.nginx1.10.2, modsecurity2.9.1 owasp3.0 1.nginx:http://nginx.org/download/ng ...
- html button自动提交表单问题
在ie中,button默认的type是button,而其他浏览器和W3C标准中button默认的属性都是submit,所以在chrome中,需要使用<button type="butt ...
- ADO.NET 实体类和数据访问类
SQL数据库字符串注入攻击:需要使用cmd.Parameters这个集合占位符: @key 代表这个位置用这个占位符占住了 Parameters这个集合中将此占位符所代表的数据补全 cmd.Param ...
- 一道灵活的css笔试题
今天在网上看到一css笔试题,乍一看很简单,实则内部暗藏玄机,题目大概是:九宫格,每格长宽50px,边框宽度5px,鼠标经过边框变红,效果如下: 鼠标路过时: 以下是代码(如有不足之处望多加指正) & ...
- WCF Service部署在IIS上
环境vs2010,WCF应用程序.如何将WCF部署在IIS上. 第一步:右键点击项目,选择生成部署包. 第二步:在你项目所在的文件目录下找到Package文件夹,这就是我们的部署包所在的地方.在这个p ...
- [leetcode] Number of Islands
Number of Islands Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. ...
- iOS 开发技巧-制作环形进度条
有几篇博客写到了怎么实现环形进度条,大多是使用Core Graph来实现,实现比较麻烦且效率略低,只是一个小小的进度条而已,我们当然是用最简单而且效率高的方式来实现. 先看一下这篇博客,博客地址:ht ...
- iOS之 APP异常捕获反馈给服务器
在我们开发的app中, 不可避免的, 有时候用户使用软件会崩溃. 我们就需要捕获异常, 可以在入口类中加入相应的代码, 可以在每次用户打开程序的时候, 检查一下沙盒中是否有崩溃日志, 如果有, 可以 ...
- iOS 修改label中文字的行间距
UILabel *label = [[UILabel alloc] init]; label.font = [UIFont systemFontOfSize:]; label.textColor = ...