上一节分析了Job由JobClient提交到JobTracker的流程,利用RPC机制,JobTracker接收到Job ID和Job所在HDFS的目录,够早了JobInProgress对象,丢入队列,另一个线程从队列中取出JobInProgress对象,并丢入线程池中执行,执行JobInProgress的initJob方法,我们逐步分析。

  public void initJob(JobInProgress job) {
if (null == job) {
LOG.info("Init on null job is not valid");
return;
} try {
JobStatus prevStatus = (JobStatus)job.getStatus().clone();
LOG.info("Initializing " + job.getJobID());
job.initTasks();
// Inform the listeners if the job state has changed
// Note : that the job will be in PREP state.
JobStatus newStatus = (JobStatus)job.getStatus().clone();
if (prevStatus.getRunState() != newStatus.getRunState()) {
JobStatusChangeEvent event =
new JobStatusChangeEvent(job, EventType.RUN_STATE_CHANGED, prevStatus,
newStatus);
synchronized (JobTracker.this) {
updateJobInProgressListeners(event);
}
}
} catch (KillInterruptedException kie) {
// If job was killed during initialization, job state will be KILLED
LOG.error("Job initialization interrupted:\n" +
StringUtils.stringifyException(kie));
killJob(job);
} catch (Throwable t) {
String failureInfo =
"Job initialization failed:\n" + StringUtils.stringifyException(t);
// If the job initialization is failed, job state will be FAILED
LOG.error(failureInfo);
job.getStatus().setFailureInfo(failureInfo);
failJob(job);
}
}

可以看出,先进行 job.initTasks(),初始化Map和Reduce任务,之后更新所有

        synchronized (JobTracker.this) {
updateJobInProgressListeners(event);
}

Map/Reduce Task初始化完毕是一个事件,下面的代码进行消息通知:

  // Update the listeners about the job
// Assuming JobTracker is locked on entry.
private void updateJobInProgressListeners(JobChangeEvent event) {
for (JobInProgressListener listener : jobInProgressListeners) {
listener.jobUpdated(event);
}
}

可见,在Job放入队列时使用的是jobAdded,此时使用的是jobUpdated。我们在后面再分析jobUpdated后的细节,此时先分析从jobAdded到jobUpdated之间,Job的初始化过程,主要分为几个阶段。

首先执行的是获取Split信息,这一部分信息事先已经由JobClient上传至HDFS中。

1、读取Split信息:

    //
// read input splits and create a map per a split
//
TaskSplitMetaInfo[] splits = createSplits(jobId);
if (numMapTasks != splits.length) {
throw new IOException("Number of maps in JobConf doesn't match number of " +
"recieved splits for job " + jobId + "! " +
"numMapTasks=" + numMapTasks + ", #splits=" + splits.length);
}
numMapTasks = splits.length;

createSplits方法的代码为:

  TaskSplitMetaInfo[] createSplits(org.apache.hadoop.mapreduce.JobID jobId)
throws IOException {
TaskSplitMetaInfo[] allTaskSplitMetaInfo =
SplitMetaInfoReader.readSplitMetaInfo(jobId, fs, jobtracker.getConf(),
jobSubmitDir);
return allTaskSplitMetaInfo;
}

即读取job.splitmetainfo文件,获得Split信息:

  public static JobSplit.TaskSplitMetaInfo[] readSplitMetaInfo(
JobID jobId, FileSystem fs, Configuration conf, Path jobSubmitDir)
throws IOException {
long maxMetaInfoSize = conf.getLong("mapreduce.jobtracker.split.metainfo.maxsize",
10000000L);
Path metaSplitFile = JobSubmissionFiles.getJobSplitMetaFile(jobSubmitDir);
FileStatus fStatus = fs.getFileStatus(metaSplitFile);
if (maxMetaInfoSize > 0 && fStatus.getLen() > maxMetaInfoSize) {
throw new IOException("Split metadata size exceeded " +
maxMetaInfoSize +". Aborting job " + jobId);
}
FSDataInputStream in = fs.open(metaSplitFile);
byte[] header = new byte[JobSplit.META_SPLIT_FILE_HEADER.length];
in.readFully(header);
if (!Arrays.equals(JobSplit.META_SPLIT_FILE_HEADER, header)) {
throw new IOException("Invalid header on split file");
}
int vers = WritableUtils.readVInt(in);
if (vers != JobSplit.META_SPLIT_VERSION) {
in.close();
throw new IOException("Unsupported split version " + vers);
}
int numSplits = WritableUtils.readVInt(in); //TODO: check for insane values
JobSplit.TaskSplitMetaInfo[] allSplitMetaInfo =
new JobSplit.TaskSplitMetaInfo[numSplits];
final int maxLocations =
conf.getInt(JobSplitWriter.MAX_SPLIT_LOCATIONS, Integer.MAX_VALUE);
for (int i = 0; i < numSplits; i++) {
JobSplit.SplitMetaInfo splitMetaInfo = new JobSplit.SplitMetaInfo();
splitMetaInfo.readFields(in);
final int numLocations = splitMetaInfo.getLocations().length;
if (numLocations > maxLocations) {
throw new IOException("Max block location exceeded for split: #" + i +
" splitsize: " + numLocations + " maxsize: " + maxLocations);
}
JobSplit.TaskSplitIndex splitIndex = new JobSplit.TaskSplitIndex(
JobSubmissionFiles.getJobSplitFile(jobSubmitDir).toString(),
splitMetaInfo.getStartOffset());
allSplitMetaInfo[i] = new JobSplit.TaskSplitMetaInfo(splitIndex,
splitMetaInfo.getLocations(),
splitMetaInfo.getInputDataLength());
}
in.close();
return allSplitMetaInfo;
}

涉及读取文件的代码有:

    FSDataInputStream in = fs.open(metaSplitFile);
byte[] header = new byte[JobSplit.META_SPLIT_FILE_HEADER.length];
in.readFully(header);

这一部分先读取job.splitmetainfo文件的头部,头部实际上是字符串”META-SPL“,该信息由下面的类指定:

public class JobSplit {
static final int META_SPLIT_VERSION = 1;
static final byte[] META_SPLIT_FILE_HEADER; static {
try {
META_SPLIT_FILE_HEADER = "META-SPL".getBytes("UTF-8");
} catch (UnsupportedEncodingException u) {
throw new RuntimeException(u);
}
}
.......

读取了文件头之后,剩下的是读取版本信息:

    int vers = WritableUtils.readVInt(in);
if (vers != JobSplit.META_SPLIT_VERSION) {
in.close();
throw new IOException("Unsupported split version " + vers);
}

检查了版本(1)后,接下来就是读取Split的数量:

    int numSplits = WritableUtils.readVInt(in); //TODO: check for insane values
JobSplit.TaskSplitMetaInfo[] allSplitMetaInfo =
new JobSplit.TaskSplitMetaInfo[numSplits];

并根据Split数量创建JobSplit.TaskSplitMetaInfo数组。接下来对于每个Split,循环读取位置等信息:

    for (int i = 0; i < numSplits; i++) {
JobSplit.SplitMetaInfo splitMetaInfo = new JobSplit.SplitMetaInfo();
splitMetaInfo.readFields(in);
final int numLocations = splitMetaInfo.getLocations().length;
if (numLocations > maxLocations) {
throw new IOException("Max block location exceeded for split: #" + i +
" splitsize: " + numLocations + " maxsize: " + maxLocations);
}
JobSplit.TaskSplitIndex splitIndex = new JobSplit.TaskSplitIndex(
JobSubmissionFiles.getJobSplitFile(jobSubmitDir).toString(),
splitMetaInfo.getStartOffset());
allSplitMetaInfo[i] = new JobSplit.TaskSplitMetaInfo(splitIndex,
splitMetaInfo.getLocations(),
splitMetaInfo.getInputDataLength());
}

在上面的代码中,splitMetaInfo.readFields(in)可以获得位置信息:

    public void readFields(DataInput in) throws IOException {
int len = WritableUtils.readVInt(in);
locations = new String[len];
for (int i = 0; i < locations.length; i++) {
locations[i] = Text.readString(in);
}
startOffset = WritableUtils.readVLong(in);
inputDataLength = WritableUtils.readVLong(in);
}

所谓的位置,实际上就是指这个Split在j哪些服务器的信息。获取到位置、Split数据长度等信息后,全部纪录在对象JobSplit.TaskSplitMetaInfo中:

      JobSplit.TaskSplitIndex splitIndex = new JobSplit.TaskSplitIndex(
JobSubmissionFiles.getJobSplitFile(jobSubmitDir).toString(),
splitMetaInfo.getStartOffset());
allSplitMetaInfo[i] = new JobSplit.TaskSplitMetaInfo(splitIndex,
splitMetaInfo.getLocations(),
splitMetaInfo.getInputDataLength());

返回allSplitMetaInfo数组。

2、根据Map任务数量创建相同数量的TaskInProgress对象:

上面返回的数组大小即纪录了Split的个数,也决定了Map的数量,验证这些服务器的合法性:

    numMapTasks = splits.length;

    // Sanity check the locations so we don't create/initialize unnecessary tasks
    for (TaskSplitMetaInfo split : splits) {
      NetUtils.verifyHostnames(split.getLocations());
    }

在监控相关类中设置相应信息:

    jobtracker.getInstrumentation().addWaitingMaps(getJobID(), numMapTasks);
jobtracker.getInstrumentation().addWaitingReduces(getJobID(), numReduceTasks);
this.queueMetrics.addWaitingMaps(getJobID(), numMapTasks);
this.queueMetrics.addWaitingReduces(getJobID(), numReduceTasks);

接下来创建TaskInProgress对象,每个Map都对应于一个TaskInProgress对象:

    maps = new TaskInProgress[numMapTasks];
for(int i=0; i < numMapTasks; ++i) {
inputLength += splits[i].getInputDataLength();
maps[i] = new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i, numSlotsPerMap);
}

TaskInProgress纪录了一个Map Task或Reduce Task运行相关的所有信息,类似于JobInProgress,TaskInProgress的构造函数有两个,分别针对Map和Reduce的,对于Map的:

  /**
* Constructor for MapTask
*/
public TaskInProgress(JobID jobid, String jobFile,
TaskSplitMetaInfo split,
JobTracker jobtracker, JobConf conf,
JobInProgress job, int partition,
int numSlotsRequired) {
this.jobFile = jobFile;
this.splitInfo = split;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.partition = partition;
this.maxSkipRecords = SkipBadRecords.getMapperMaxSkipRecords(conf);
this.numSlotsRequired = numSlotsRequired;
setMaxTaskAttempts();
init(jobid);
}

splitInfo纪录了当前Split的信息,partition即表示这是第几个Map Task,numSlotsRequired为1.

创建好的TaskInProgress将会放入缓存中:

    if (numMapTasks > 0) {
nonRunningMapCache = createCache(splits, maxLevel);
}

nonRunningMapCache是一个未运行起来的Map任务的关于主机信息等等的缓存,其索引为Node,即服务器;而其值为TaskInProgress对象,其声明为,因此,实际上就是解析Split所在的服务器,缓存下来,供后续调度使用:

  Map<Node, List<TaskInProgress>> nonRunningMapCache;

其方法代码为:

  private Map<Node, List<TaskInProgress>> createCache(
TaskSplitMetaInfo[] splits, int maxLevel)
throws UnknownHostException {
Map<Node, List<TaskInProgress>> cache =
new IdentityHashMap<Node, List<TaskInProgress>>(maxLevel); Set<String> uniqueHosts = new TreeSet<String>();
for (int i = 0; i < splits.length; i++) {
String[] splitLocations = splits[i].getLocations();
if (splitLocations == null || splitLocations.length == 0) {
nonLocalMaps.add(maps[i]);
continue;
} for(String host: splitLocations) {
Node node = jobtracker.resolveAndAddToTopology(host);
uniqueHosts.add(host);
LOG.info("tip:" + maps[i].getTIPId() + " has split on node:" + node);
for (int j = 0; j < maxLevel; j++) {
List<TaskInProgress> hostMaps = cache.get(node);
if (hostMaps == null) {
hostMaps = new ArrayList<TaskInProgress>();
cache.put(node, hostMaps);
hostMaps.add(maps[i]);
}
//check whether the hostMaps already contains an entry for a TIP
//This will be true for nodes that are racks and multiple nodes in
//the rack contain the input for a tip. Note that if it already
//exists in the hostMaps, it must be the last element there since
//we process one TIP at a time sequentially in the split-size order
if (hostMaps.get(hostMaps.size() - 1) != maps[i]) {
hostMaps.add(maps[i]);
}
node = node.getParent();
}
}
} // Calibrate the localityWaitFactor - Do not override user intent!
if (localityWaitFactor == DEFAULT_LOCALITY_WAIT_FACTOR) {
int jobNodes = uniqueHosts.size();
int clusterNodes = jobtracker.getNumberOfUniqueHosts(); if (clusterNodes > 0) {
localityWaitFactor =
Math.min((float)jobNodes/clusterNodes, localityWaitFactor);
}
LOG.info(jobId + " LOCALITY_WAIT_FACTOR=" + localityWaitFactor);
} return cache;
}

3、根据Reduce任务数量创建相同数量的TaskInProgress对象:

代码和Map基本相同:

    //
// Create reduce tasks
//
this.reduces = new TaskInProgress[numReduceTasks];
for (int i = 0; i < numReduceTasks; i++) {
reduces[i] = new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this, numSlotsPerReduce);
nonRunningReduces.add(reduces[i]);
}

4、计算Reduce任务启动前Map最少应该启动的数量:

根据MapReduce原理,先进行Map计算,之后中间结果再传递至Reduce计算,因此,Map要先进行计算,Reduce如果和Map一起启动,那么,Reduce必然先一直处于等待中。这会消耗机器资源,且Shuffle时间比较长。所以,这个值默认是Map所有任务数量的5%:

    // Calculate the minimum number of maps to be complete before
// we should start scheduling reduces
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat("mapred.reduce.slowstart.completed.maps",
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks)); // ... use the same for estimating the total output of all maps
resourceEstimator.setThreshhold(completedMapsForReduceSlowstart);

从DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART可以看出,是5%:

  private static float DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART = 0.05f;

5、创建Map和Reduce任务的清理任务,各一个:

    // create cleanup two cleanup tips, one map and one reduce.
cleanup = new TaskInProgress[2]; // cleanup map tip. This map doesn't use any splits. Just assign an empty
// split.
TaskSplitMetaInfo emptySplit = JobSplit.EMPTY_TASK_SPLIT;
cleanup[0] = new TaskInProgress(jobId, jobFile, emptySplit,
jobtracker, conf, this, numMapTasks, 1);
cleanup[0].setJobCleanupTask(); // cleanup reduce tip.
cleanup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks, jobtracker, conf, this, 1);
cleanup[1].setJobCleanupTask();

6、创建Map和Reduce任务的启动任务,各一个:

    // create two setup tips, one map and one reduce.
setup = new TaskInProgress[2]; // setup map tip. This map doesn't use any split. Just assign an empty
// split.
setup[0] = new TaskInProgress(jobId, jobFile, emptySplit,
jobtracker, conf, this, numMapTasks + 1, 1);
setup[0].setJobSetupTask(); // setup reduce tip.
setup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
numReduceTasks + 1, jobtracker, conf, this, 1);
setup[1].setJobSetupTask();

7、Map/Reduce Task初始化完毕:

    synchronized(jobInitKillStatus){
jobInitKillStatus.initDone = true; // set this before the throw to make sure cleanup works properly
tasksInited = true; if(jobInitKillStatus.killed) {
throw new KillInterruptedException("Job " + jobId + " killed in init");
}
}

初始化完毕后,会通过jobUpdated进行通知。Job更新的事件主要有三种:

  static enum EventType {RUN_STATE_CHANGED, START_TIME_CHANGED, PRIORITY_CHANGED}

此时初始化完毕属于RUN_STATE_CHANGED。从其代码来看,如果是运行状态改变,并不执行什么操作:

  public synchronized void jobUpdated(JobChangeEvent event) {
JobInProgress job = event.getJobInProgress();
if (event instanceof JobStatusChangeEvent) {
// Check if the ordering of the job has changed
// For now priority and start-time can change the job ordering
JobStatusChangeEvent statusEvent = (JobStatusChangeEvent)event;
JobSchedulingInfo oldInfo =
new JobSchedulingInfo(statusEvent.getOldStatus());
if (statusEvent.getEventType() == EventType.PRIORITY_CHANGED
|| statusEvent.getEventType() == EventType.START_TIME_CHANGED) {
// Make a priority change
reorderJobs(job, oldInfo);
} else if (statusEvent.getEventType() == EventType.RUN_STATE_CHANGED) {
// Check if the job is complete
int runState = statusEvent.getNewStatus().getRunState();
if (runState == JobStatus.SUCCEEDED
|| runState == JobStatus.FAILED
|| runState == JobStatus.KILLED) {
jobCompleted(oldInfo);
}
}
}
}

因为此时Job并未结束。从此可以看出,Job在初始化完毕后,线程池又去执行其他Job的初始化等操作,等待TaskTracker来取。

关于TaskTracker与JobTracker之间的心跳,以及任务的获取等操作,比较复杂,留作后续博文分析。

后记

由流程图来看:

本博文在上一节分析了1、2、3、4的基础上,分析了5、6两个步骤,即Job的初始化、到HDFS中获取资源数据,获得Map和Reduce数量等过程。关于7、8、9、10等后续操作,在后续博文中分析。

MapReduce剖析笔记之三:Job的Map/Reduce Task初始化的更多相关文章

  1. MapReduce剖析笔记之二:Job提交的过程

    上一节以WordCount分析了MapReduce的基本执行流程,但并没有从框架上进行分析,这一部分工作在后续慢慢补充.这一节,先剖析一下作业提交过程. 在分析之前,我们先进行一下粗略的思考,如果要我 ...

  2. MapReduce剖析笔记之五:Map与Reduce任务分配过程

    在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体 ...

  3. MapReduce剖析笔记之四:TaskTracker通过心跳机制获取任务的流程

    上一节分析到了JobTracker把作业从队列里取出来并进行了初始化,所谓的初始化,主要是获取了Map.Reduce任务的数量,并统计了哪些DataNode所在的服务器可以处理哪些Split等等,将这 ...

  4. MapReduce剖析笔记之七:Child子进程处理Map和Reduce任务的主要流程

    在上一节我们分析了TaskTracker如何对JobTracker分配过来的任务进行初始化,并创建各类JVM启动所需的信息,最终创建JVM的整个过程,本节我们继续来看,JVM启动后,执行的是Child ...

  5. MapReduce剖析笔记之八: Map输出数据的处理类MapOutputBuffer分析

    在上一节我们分析了Child子进程启动,处理Map.Reduce任务的主要过程,但对于一些细节没有分析,这一节主要对MapOutputBuffer这个关键类进行分析. MapOutputBuffer顾 ...

  6. MapReduce剖析笔记之一:从WordCount理解MapReduce的几个阶段

    WordCount是一个入门的MapReduce程序(从src\examples\org\apache\hadoop\examples粘贴过来的): package org.apache.hadoop ...

  7. MapReduce剖析笔记之六:TaskTracker初始化任务并启动JVM过程

    在上面一节我们分析了JobTracker调用JobQueueTaskScheduler进行任务分配,JobQueueTaskScheduler又调用JobInProgress按照一定顺序查找任务的流程 ...

  8. Google的分布式计算模型Map Reduce map函数将输入分割成key/value对

    http://www.nowamagic.net/librarys/veda/detail/1768 上一篇 大规模分布式数据处理平台Hadoop的介绍 中提到了Google的分布式计算模型Map R ...

  9. Hadoop Map/Reduce教程

    原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...

随机推荐

  1. Key/Value之王Memcached初探:二、Memcached在.Net中的基本操作

    一.Memcached ClientLib For .Net 首先,不得不说,许多语言都实现了连接Memcached的客户端,其中以Perl.PHP为主. 仅仅memcached网站上列出的语言就有: ...

  2. 基于DDD的现代ASP.NET开发框架--ABP系列文章总目录

    ABP相关岗位招聘:给热爱.NET新技术和ABP框架的朋友带来一个高薪的工作机会 ABP交流会录像视频:ABP架构设计交流群-7月18日上海线下交流会的内容分享(有高清录像视频的链接) 代码自动生成: ...

  3. 【Win 10 应用开发】在App所在的进程中执行后台任务

    在以往版本中,后台任务都是以独立的专用进程来运行,因此,定义后台任务代码的类型都要位于 Windows 运行时组件项目中. 不过,在14393中,SDK 作了相应的扩展,不仅支持以前的独立进程中运行后 ...

  4. 创建 OVS Local Network - 每天5分钟玩转 OpenStack(129)

    上一节我们完成了 OVS 的准备工作,本节从最基础的 local network 开始学习.local network 不会与宿主机的任何物理网卡连接,流量只被限制在宿主机内,同时也不关联任何的 VL ...

  5. 【原创经验分享】WCF之消息队列

    最近都在鼓捣这个WCF,因为看到说WCF比WebService功能要强大许多,另外也看了一些公司的招聘信息,貌似一些中.高级的程序员招聘,都有提及到WCF这一块,所以,自己也关心关心一下,虽然目前工作 ...

  6. 基于Composer Player 模型加载和相关属性设置

    主要是基于达索软件Composer Player.的基础上做些二次开发. public class ComposerToolBarSetting { public bool AntiAliasingO ...

  7. java面向对象中的关键字

    1,super关键字 super:父类的意思 1. super.属性名 (调用父类的属性) 2. super.方法名 (调用父类的方法) 3. super([参数列表])(调用父类的构造方法) 注意: ...

  8. SpringMVC入门

    Spring Web MVC是一种基于Java的实现了Web MVC设计模式的请求驱动类型的轻量级Web框架,即使用了MVC架构模式的思想,将web层进行职责解耦,基于请求驱动指的就是使用请求-响应模 ...

  9. Jenkins配置MSBuild实现自动部署(MSBuild+SVN/Subversion+FTP+BAT)

    所要用到的主要插件: [MSBuild Plugin] 具体操作: 1.配置MSBuild的版本 [系统管理]->[Global Tool Configuration]->[MSBuild ...

  10. C#迪杰斯特拉算法

    C#迪杰斯特拉算法 网上有许多版本的,自己还是写一个理解点 Dijkstra.cs public class Dijkstra { private List<Node> _nodes; p ...