转:http://blog.csdn.net/jediael_lu/article/details/38705371

以下程序在hadoop1.2.1上测试成功。

本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析。

一、源代码

 package org.jediael.hadoopdemo.wordcount;  

 import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class WordCount { public static class WordCountMap extends
Mapper<LongWritable, Text, Text, IntWritable> { private final IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer token = new StringTokenizer(line);
while (token.hasMoreTokens()) {
word.set(token.nextToken());
context.write(word, one);
}
}
} public static class WordCountReduce extends
Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJarByClass(WordCount.class);
job.setJobName("wordcount"); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordCountMap.class);
job.setReducerClass(WordCountReduce.class); job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true);
}
}

二、执行程序

1、从eclipse从导出至wordcount.jar,并上传至hadoop服务器,本例中,将程序上传至/home/jediael/project。

2、安装hadoop伪分布模式,可参考Hadoop1.2.1伪分布模式安装指南,本实例将运行在hadoop的伪公布环境中。

3、在HDFS中创建目录wcinput,用作输入目录,并将需要分析的文件复制到目录下。

  1. [root@jediael conf]# hadoop fs -mkdir wcinput
    [root@jediael conf]# hadoop fs -copyFromLocal * wcinput
    [root@jediael conf]# hadoop fs -ls wcinput
    Found 26 items
    -rw-r--r-- 1 root supergroup 1524 2014-08-20 12:29 /user/root/wcinput/automaton-urlfilter.txt
    -rw-r--r-- 1 root supergroup 1311 2014-08-20 12:29 /user/root/wcinput/configuration.xsl
    -rw-r--r-- 1 root supergroup 131090 2014-08-20 12:29 /user/root/wcinput/domain-suffixes.xml
    -rw-r--r-- 1 root supergroup 4649 2014-08-20 12:29 /user/root/wcinput/domain-suffixes.xsd
    -rw-r--r-- 1 root supergroup 824 2014-08-20 12:29 /user/root/wcinput/domain-urlfilter.txt
    -rw-r--r-- 1 root supergroup 3368 2014-08-20 12:29 /user/root/wcinput/gora-accumulo-mapping.xml
    -rw-r--r-- 1 root supergroup 3279 2014-08-20 12:29 /user/root/wcinput/gora-cassandra-mapping.xml
    -rw-r--r-- 1 root supergroup 3447 2014-08-20 12:29 /user/root/wcinput/gora-hbase-mapping.xml
    -rw-r--r-- 1 root supergroup 2677 2014-08-20 12:29 /user/root/wcinput/gora-sql-mapping.xml
    -rw-r--r-- 1 root supergroup 2993 2014-08-20 12:29 /user/root/wcinput/gora.properties
    -rw-r--r-- 1 root supergroup 983 2014-08-20 12:29 /user/root/wcinput/hbase-site.xml
    -rw-r--r-- 1 root supergroup 3096 2014-08-20 12:29 /user/root/wcinput/httpclient-auth.xml
    -rw-r--r-- 1 root supergroup 3948 2014-08-20 12:29 /user/root/wcinput/log4j.properties
    -rw-r--r-- 1 root supergroup 511 2014-08-20 12:29 /user/root/wcinput/nutch-conf.xsl
    -rw-r--r-- 1 root supergroup 42610 2014-08-20 12:29 /user/root/wcinput/nutch-default.xml
    -rw-r--r-- 1 root supergroup 753 2014-08-20 12:29 /user/root/wcinput/nutch-site.xml
    -rw-r--r-- 1 root supergroup 347 2014-08-20 12:29 /user/root/wcinput/parse-plugins.dtd
    -rw-r--r-- 1 root supergroup 3016 2014-08-20 12:29 /user/root/wcinput/parse-plugins.xml
    -rw-r--r-- 1 root supergroup 857 2014-08-20 12:29 /user/root/wcinput/prefix-urlfilter.txt
    -rw-r--r-- 1 root supergroup 2484 2014-08-20 12:29 /user/root/wcinput/regex-normalize.xml
    -rw-r--r-- 1 root supergroup 1736 2014-08-20 12:29 /user/root/wcinput/regex-urlfilter.txt
    -rw-r--r-- 1 root supergroup 18969 2014-08-20 12:29 /user/root/wcinput/schema-solr4.xml
    -rw-r--r-- 1 root supergroup 6020 2014-08-20 12:29 /user/root/wcinput/schema.xml
    -rw-r--r-- 1 root supergroup 1766 2014-08-20 12:29 /user/root/wcinput/solrindex-mapping.xml
    -rw-r--r-- 1 root supergroup 1044 2014-08-20 12:29 /user/root/wcinput/subcollections.xml
    -rw-r--r-- 1 root supergroup 1411 2014-08-20 12:29 /user/root/wcinput/suffix-urlfilter.txt

4、运行程序

  1. [root@jediael project]# hadoop org.jediael.hadoopdemo.wordcount.WordCount wcinput wcoutput3
    14/08/20 12:50:25 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    14/08/20 12:50:26 INFO input.FileInputFormat: Total input paths to process : 26
    14/08/20 12:50:26 INFO util.NativeCodeLoader: Loaded the native-hadoop library
    14/08/20 12:50:26 WARN snappy.LoadSnappy: Snappy native library not loaded
    14/08/20 12:50:26 INFO mapred.JobClient: Running job: job_201408191134_0005
    14/08/20 12:50:27 INFO mapred.JobClient: map 0% reduce 0%
    14/08/20 12:50:38 INFO mapred.JobClient: map 3% reduce 0%
    14/08/20 12:50:39 INFO mapred.JobClient: map 7% reduce 0%
    14/08/20 12:50:50 INFO mapred.JobClient: map 15% reduce 0%
    14/08/20 12:50:57 INFO mapred.JobClient: map 19% reduce 0%
    14/08/20 12:50:58 INFO mapred.JobClient: map 23% reduce 0%
    14/08/20 12:51:00 INFO mapred.JobClient: map 23% reduce 5%
    14/08/20 12:51:04 INFO mapred.JobClient: map 30% reduce 5%
    14/08/20 12:51:06 INFO mapred.JobClient: map 30% reduce 10%
    14/08/20 12:51:11 INFO mapred.JobClient: map 38% reduce 10%
    14/08/20 12:51:16 INFO mapred.JobClient: map 38% reduce 11%
    14/08/20 12:51:18 INFO mapred.JobClient: map 46% reduce 11%
    14/08/20 12:51:19 INFO mapred.JobClient: map 46% reduce 12%
    14/08/20 12:51:22 INFO mapred.JobClient: map 46% reduce 15%
    14/08/20 12:51:25 INFO mapred.JobClient: map 53% reduce 15%
    14/08/20 12:51:31 INFO mapred.JobClient: map 53% reduce 17%
    14/08/20 12:51:32 INFO mapred.JobClient: map 61% reduce 17%
    14/08/20 12:51:39 INFO mapred.JobClient: map 69% reduce 17%
    14/08/20 12:51:40 INFO mapred.JobClient: map 69% reduce 20%
    14/08/20 12:51:45 INFO mapred.JobClient: map 73% reduce 20%
    14/08/20 12:51:46 INFO mapred.JobClient: map 76% reduce 23%
    14/08/20 12:51:52 INFO mapred.JobClient: map 80% reduce 23%
    14/08/20 12:51:53 INFO mapred.JobClient: map 84% reduce 23%
    14/08/20 12:51:55 INFO mapred.JobClient: map 84% reduce 25%
    14/08/20 12:51:59 INFO mapred.JobClient: map 88% reduce 25%
    14/08/20 12:52:00 INFO mapred.JobClient: map 92% reduce 25%
    14/08/20 12:52:02 INFO mapred.JobClient: map 92% reduce 29%
    14/08/20 12:52:06 INFO mapred.JobClient: map 96% reduce 29%
    14/08/20 12:52:07 INFO mapred.JobClient: map 100% reduce 29%
    14/08/20 12:52:11 INFO mapred.JobClient: map 100% reduce 30%
    14/08/20 12:52:15 INFO mapred.JobClient: map 100% reduce 100%
    14/08/20 12:52:17 INFO mapred.JobClient: Job complete: job_201408191134_0005
    14/08/20 12:52:18 INFO mapred.JobClient: Counters: 29
    14/08/20 12:52:18 INFO mapred.JobClient: Job Counters
    14/08/20 12:52:18 INFO mapred.JobClient: Launched reduce tasks=1
    14/08/20 12:52:18 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=192038
    14/08/20 12:52:18 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0
    14/08/20 12:52:18 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0
    14/08/20 12:52:18 INFO mapred.JobClient: Launched map tasks=26
    14/08/20 12:52:18 INFO mapred.JobClient: Data-local map tasks=26
    14/08/20 12:52:18 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=95814
    14/08/20 12:52:18 INFO mapred.JobClient: File Output Format Counters
    14/08/20 12:52:18 INFO mapred.JobClient: Bytes Written=123950
    14/08/20 12:52:18 INFO mapred.JobClient: FileSystemCounters
    14/08/20 12:52:18 INFO mapred.JobClient: FILE_BYTES_READ=352500
    14/08/20 12:52:18 INFO mapred.JobClient: HDFS_BYTES_READ=247920
    14/08/20 12:52:18 INFO mapred.JobClient: FILE_BYTES_WRITTEN=2177502
    14/08/20 12:52:18 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=123950
    14/08/20 12:52:18 INFO mapred.JobClient: File Input Format Counters
    14/08/20 12:52:18 INFO mapred.JobClient: Bytes Read=244713
    14/08/20 12:52:18 INFO mapred.JobClient: Map-Reduce Framework
    14/08/20 12:52:18 INFO mapred.JobClient: Map output materialized bytes=352650
    14/08/20 12:52:18 INFO mapred.JobClient: Map input records=7403
    14/08/20 12:52:18 INFO mapred.JobClient: Reduce shuffle bytes=352650
    14/08/20 12:52:18 INFO mapred.JobClient: Spilled Records=45210
    14/08/20 12:52:18 INFO mapred.JobClient: Map output bytes=307281
    14/08/20 12:52:18 INFO mapred.JobClient: Total committed heap usage (bytes)=3398606848
    14/08/20 12:52:18 INFO mapred.JobClient: CPU time spent (ms)=14400
    14/08/20 12:52:18 INFO mapred.JobClient: Combine input records=0
    14/08/20 12:52:18 INFO mapred.JobClient: SPLIT_RAW_BYTES=3207
    14/08/20 12:52:18 INFO mapred.JobClient: Reduce input records=22605
    14/08/20 12:52:18 INFO mapred.JobClient: Reduce input groups=6749
    14/08/20 12:52:18 INFO mapred.JobClient: Combine output records=0
    14/08/20 12:52:18 INFO mapred.JobClient: Physical memory (bytes) snapshot=4799041536
    14/08/20 12:52:18 INFO mapred.JobClient: Reduce output records=6749
    14/08/20 12:52:18 INFO mapred.JobClient: Virtual memory (bytes) snapshot=19545337856
    14/08/20 12:52:18 INFO mapred.JobClient: Map output records=22605

5、查看结果

  1. root@jediael project]# hadoop fs -ls wcoutput3
    Found 3 items
    -rw-r--r-- 1 root supergroup 0 2014-08-20 12:52 /user/root/wcoutput3/_SUCCESS
    drwxr-xr-x - root supergroup 0 2014-08-20 12:50 /user/root/wcoutput3/_logs
    -rw-r--r-- 1 root supergroup 123950 2014-08-20 12:52 /user/root/wcoutput3/part-r-00000
    [root@jediael project]# hadoop fs -cat wcoutput3/part-r-00000
    !! 2
    !ci.*.*.us 1
    !co.*.*.us 1
    !town.*.*.us 1
    "AS 22
    "Accept" 1
    "Accept-Language" 1
    "License"); 22
    "NOW" 1
    "WiFi" 1
    "Z" 1
    "all" 1
    "content" 1
    "delete 1
    "delimiter" 1

三、程序分析

1、WordCountMap类继承了org.apache.hadoop.mapreduce.Mapper,4个泛型类型分别是map函数输入key的类型,输入value的类型,输出key的类型,输出value的类型。
 
2、WordCountReduce类继承了org.apache.hadoop.mapreduce.Reducer,4个泛型类型含义与map类相同。
 
3、map的输出类型与reduce的输入类型相同,而一般情况下,map的输出类型与reduce的输出类型相同,因此,reduce的输入类型与输出类型相同。
 
4、hadoop根据以下代码确定输入内容的格式:
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat是hadoop默认的输入方法,它继承自FileInputFormat。在TextInputFormat中,它将数据集切割成小数据集InputSplit,每一个InputSplit由一个mapper处理。此外,InputFormat还提供了一个RecordReader的实现,将一个InputSplit解析成<key,value>的形式,并提供给map函数:
key:这个数据相对于数据分片中的字节偏移量,数据类型是LongWritable。
value:每行数据的内容,类型是Text。
因此,在本例中,map函数的key/value类型是LongWritable与Text。
 
5、Hadoop根据以下代码确定输出内容的格式:
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat是hadoop默认的输出格式,它会将每条记录一行的形式存入文本文件,如
the 30
happy 23
……

Hadoop入门经典:WordCount的更多相关文章

  1. Hadoop入门经典:WordCount 分类: A1_HADOOP 2014-08-20 14:43 2514人阅读 评论(0) 收藏

    以下程序在hadoop1.2.1上测试成功. 本例先将源代码呈现,然后详细说明执行步骤,最后对源代码及执行过程进行分析. 一.源代码 package org.jediael.hadoopdemo.wo ...

  2. Hadoop入门程序WordCount的执行过程

    首先编写WordCount.java源文件,分别通过map和reduce方法统计文本中每个单词出现的次数,然后按照字母的顺序排列输出, Map过程首先是多个map并行提取多个句子里面的单词然后分别列出 ...

  3. Hadoop入门实例——WordCount统计单词

    首先要说明的是运行Hadoop需要jdk1.6或以上版本,如果你还没有搭建好Hadoop集群,请参考我的另一篇文章: Linux环境搭建Hadoop伪分布模式 马上进入正题. 1.启动Hadoop集群 ...

  4. 初识Hadoop入门介绍

    初识hadoop入门介绍 Hadoop一直是我想学习的技术,正巧最近项目组要做电子商城,我就开始研究Hadoop,虽然最后鉴定Hadoop不适用我们的项目,但是我会继续研究下去,技多不压身. < ...

  5. hadoop 入门实例【转】

    原文链接:http://www.cnblogs.com/xia520pi/archive/2012/06/04/2534533.html 1.数据去重  "数据去重"主要是为了掌握 ...

  6. 一.hadoop入门须知

    目录: 1.hadoop入门须知 2.hadoop环境搭建 3.hadoop mapreduce之WordCount例子 4.idea本地调试hadoop程序 5.hadoop 从mysql中读取数据 ...

  7. Hadoop Mapreduce 案例 wordcount+统计手机流量使用情况

    mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:word ...

  8. 大数据初级笔记二:Hadoop入门之Hadoop集群搭建

    Hadoop集群搭建 把环境全部准备好,包括编程环境. JDK安装 版本要求: 强烈建议使用64位的JDK版本,这样的优势在于JVM的能够访问到的最大内存就不受限制,基于后期可能会学习到Spark技术 ...

  9. 转 Kafka入门经典教程

    Kafka入门经典教程 http://www.aboutyun.com/thread-12882-1-1.html 问题导读 1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic. ...

随机推荐

  1. HackerRank and MiniMax

    传送门 Sherlock and MiniMax Authored by darkshadows on May 07 2014 Problem Statement Watson gives Sherl ...

  2. 从注册流程 分析如何安全退出多个Activity 多种方式(附DEMO)

      退出Activity注册Android遍历   目录(?)[+] 前言 知识结构 具体方案 方案1 方法采用FLAG_ACTIVITY_CLEAR_TOP退出整个程序多activity 方案2 方 ...

  3. IOS基础之 (十五)知识点

    一 SEL 1. 方法的存储位置 每个类的方法地址列表都存储在类对象中. 每个方法都有一个与之对应的SEL类型的对象. 根据一个SEL对象就可以找到方法的地址,进而调用方法. Person.h #im ...

  4. codeforce 626E(二分)

    E. Simple Skewness time limit per test 3 seconds memory limit per test 256 megabytes input standard ...

  5. 在Vs2012 中使用SQL Server 2012 Express LocalDB打开Sqlserver2012数据库

    http://www.cnblogs.com/huangtailang/p/4221164.html 背景:个人电脑中使用的是VS2012,数据库为2008R2,最近需要打开一个SqlServer20 ...

  6. jquery ajax提交表单数据的两种方式

    http://www.kwstu.com/ArticleView/kwstu_201331316441313 貌似AJAX越来越火了,作为一个WEB程序开发者要是不会这个感觉就要落伍,甚至有可能在求职 ...

  7. Spring学习8-Spring事务管理(注解式声明事务管理)

    步骤一.在spring配置文件中引入<tx:>命名空间 <beans xmlns="http://www.springframework.org/schema/beans& ...

  8. IDEA 从SVN检出项目相关配置

    1.新建好一个工程,然后通过SVN检出项目 2.检出后一般tomcat的环境是配置好的,点击上方Project Structure按钮,弹出窗体,查看Project项,一般没问题,如果要配置就配置Pr ...

  9. Note:JSON

    JSON是JavaScript的原生格式,意味着在JavaScript中处理JSON数据不需要特殊的API或工具包,它是完全独立于语言的文本格式,可以把JavaScript对象中的一组对象转化为字符串 ...

  10. B0BO TFS 安装指南(转载)

    TFS2008安装过几次,每次都遇到点麻烦,结合网上的一些经验总结一下: Windows SharePoint Services 安装 Windows SharePoint Services你有两个选 ...