[BZOJ2303][Apio2011]方格染色
[BZOJ2303][Apio2011]方格染色
试题描述
Sam和他的妹妹Sara有一个包含n × m个方格的
表格。她们想要将其的每个方格都染成红色或蓝色。
出于个人喜好,他们想要表格中每个2 × 2的方形区
域都包含奇数个(1 个或 3 个)红色方格。例如,右
图是一个合法的表格染色方案(在打印稿中,深色代
表蓝色,浅色代表红色) 。
可是昨天晚上,有人已经给表格中的一些方格染上了颜色!现在Sam和Sara
非常生气。不过,他们想要知道是否可能给剩下的方格染上颜色,使得整个表格
仍然满足她们的要求。如果可能的话,满足他们要求的染色方案数有多少呢?
输入
输入的第一行包含三个整数n, m和k,分别代表表格的行数、列数和已被染
色的方格数目。
之后的k行描述已被染色的方格。其中第 i行包含三个整数xi, yi和ci,分别
代表第 i 个已被染色的方格的行编号、列编号和颜色。ci为 1 表示方格被染成红
色,ci为 0表示方格被染成蓝色。
输出
输出一个整数,表示可能的染色方案数目 W 模 10^9得到的值。(也就是说,如果 W大于等于10^9,则输出 W被10^9除所得的余数)。
输入示例
输出示例
数据规模及约定
对于所有的测试数据,2 ≤ n, m ≤ 10^6,0 ≤ k ≤ 10^6,1 ≤ xi ≤ n,1 ≤ yi ≤ m。
题解
这种带上某种限制再染色的题目一般都是先确定第一行,再依次确定2~n行,比如这题。
假设先不考虑事先涂上的格子,红色用1表示,蓝色用0表示。我们可以枚举第一行,接下来第 i 行可以是第 i-1 行的全部奇数位取异或值,其余不变;或是第 i-1 行的全部偶数位取异或值,其余不变。于是每向下处理一行答案数扩大1倍,即 方案数 = 第一行方案数 × 2n-1
现在考虑事先涂上的格子,不考虑无解的情况,不难发现同一行若是有两列(第 a 列和第 b 列)都有涂好颜色的格子,那么第一行的第 a 列于第 b 列的颜色就会有一个制约关系,所以把同行的两列合并成一个连通分量,最后看不含第一行位置的连通块的个数,设这个个数为 t,则 第一行方案数 = 2t. 注意,这时 方案数 = 第一行方案数 × 2没有涂颜色的行数。
再特判一下无解的情况,之前提到一个制约关系,现在我们就好好研究一下这个制约关系。(设某一行第 a 列和第 b 列数的相等关系为p,p=1时不等,p=0时相等;第一行第 a 列和第 b 列数的相等关系为q,q=1时不等,q=0时相等)
有如下关系:
1.) a 与 b 奇偶性相同时,q = p;
2.) a 与 b 奇偶性不同时,q = p Xor (行数 - 1)。
用并查集维护2m个点,表示第一行每个数(Ai)等于 1 或 0 的条件,每个连通块表示其中所有条件全部成立。例如,当第 a 列和第 b 列数不同时,把(Aa = 1)与(Ab = 0)加入同一个连通块,同时把(Aa = 0)与(Ab = 1)也加入同一个连通块。最后再看是否有(Ai = 0)与(Ai = 1)在同一个连通块中就行了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <vector>
#include <queue>
#include <cstdlib>
#include <ctime>
using namespace std; const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *tail;
inline char Getchar() {
if(Head == tail) {
int l = fread(buffer, 1, BufferSize, stdin);
tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
} #define maxn 1000010
#define MOD 1000000000
#define LL long long
int n, m, k, last[maxn]; int fa[maxn], f2[maxn<<1];
bool val[maxn], line[maxn];
int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); }
int findset2(int x) { return x == f2[x] ? x : f2[x] = findset2(f2[x]); } struct Point { int x, y, c; } ps[maxn]; int Pow(int a, int b) {
if(!b) return 1;
b--; int t = a;
while(b) {
if(b & 1) a = ((LL)a * t) % MOD;
b >>= 1; t = ((LL)t * t) % MOD;
}
return a;
} bool add(int a, int b, bool c1, bool c2, int x) {
if((a & 1) ^ (b & 1)) c2 ^= (x & 1);
int u = findset2((a << 1) | c1), v = findset2((b << 1) | c2);
if(u != v) f2[v] = u;
c1 ^= 1; c2 ^= 1;
u = findset2((a << 1) | c1); v = findset2((b << 1) | c2);
if(u != v) f2[v] = u;
if(findset2(a << 1) == findset2((a << 1) | 1) || findset2(b << 1) == findset2((b << 1) | 1)) return 1;
return 0;
} int main() {
n = read(); m = read(); k = read();
for(int i = 1; i <= k; i++) {
ps[i].x = read(); ps[i].y = read(); ps[i].c = read();
if(ps[i].x == 1) val[ps[i].y] = 1;
line[ps[i].x] = 1;
} int cnt = m;
for(int i = 1; i <= m; i++) fa[i] = i;
for(int i = 1; i <= (m << 1) + 1; i++) f2[i] = i;
for(int i = 1; i <= k; i++) {
if(last[ps[i].x]) {
int t = last[ps[i].x];
int a = findset(ps[i].y), b = findset(ps[t].y);
if(a != b) {
fa[b] = a;
val[a] |= val[b]; val[b] = 0;
cnt--;
}
if(add(ps[i].y, ps[t].y, ps[i].c, ps[t].c, ps[i].x + 1)) {
puts("0");
return 0;
}
}
last[ps[i].x] = i;
}
for(int i = 1; i <= m; i++) if(val[i]) cnt--;
int tmp = 0;
for(int i = 2; i <= n; i++) if(!line[i]) tmp++;
int ans = Pow(2, cnt + tmp); printf("%d\n", ans); return 0;
}
[BZOJ2303][Apio2011]方格染色的更多相关文章
- BZOJ2303 APIO2011方格染色(并查集)
比较难想到的是将题目中的要求看做异或.那么有ai,j^ai+1,j^ai,j+1^ai+1,j+1=1.瞎化一化可以大胆猜想得到a1,1^a1,j^ai,1^ai,j=(i-1)*(j-1)& ...
- BZOJ2303: [Apio2011]方格染色 【并查集】
Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 个或 3 ...
- BZOJ2303 [Apio2011]方格染色 并查集
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2303 题意概括 现在有一个N*M矩阵,矩阵上只能填数字0或1 现在矩阵里已经有一些格子被填写了数字 ...
- BZOJ2303 APIO2011方格染色
这题太神了 首先我们可以发现只有当i和j都是偶数时a[1][1]^a[1][j]^a[i][1]^a[i][j]=1才满足情况,其它时都为0 所以我们可以先把i和j都为偶数的地方^1变为0 下面才是最 ...
- BZOJ_2303_[Apio2011]方格染色 _并查集
BZOJ_2303_[Apio2011]方格染色 _并查集 Description Sam和他的妹妹Sara有一个包含n × m个方格的 表格.她们想要将其的每个方格都染成红色或蓝色. 出于个人喜好, ...
- bzoj 2303: [Apio2011]方格染色
传送门 Description Sam和他的妹妹Sara有一个包含n × m个方格的表格.她们想要将其的每个方格都染成红色或蓝色.出于个人喜好,他们想要表格中每个2 × 2的方形区域都包含奇数个(1 ...
- 【题解】P3631 [APIO2011]方格染色
很有意思的一道题,所以单独拿出来了. 完整分享看 这里 题目链接 luogu 题意 有一个包含 \(n \times m\) 个方格的表格.要将其中的每个方格都染成红色或蓝色.表格中每个 \(2 \t ...
- BZOJ 2303: [Apio2011]方格染色 题解
题目大意: 有n*m的方格,中间的数要么是1,要么是0,要求任意2*2的方格中的数异或和为1.已知一部分格子中的数,求合法的填数的方案数. 思路: 由题意得:a[i][j]^a[i][j+1]^a[i ...
- BZOJ 2303: [Apio2011]方格染色 [并查集 数学!]
题意: $n*m:n,m \le 10^6$的网格,每个$2 \times 2$的方格必须有1个或3个涂成红色,其余涂成蓝色 有一些方格已经有颜色 求方案数 太神了!!!花我三节课 首先想了一下只有两 ...
随机推荐
- SQL替换语句之批量修改、增加、删除字段内容
语法 REPLACE ( original-string, search-string, replace-string ) 用法 update 表的名称 set 替换字段=REPLACE(替换字段,原 ...
- [USACO2003][poj2112]Optimal Milking(floyd+二分+二分图多重匹配)
http://poj.org/problem?id=2112 题意: 有K个挤奶器,C头奶牛,每个挤奶器最多能给M头奶牛挤奶. 每个挤奶器和奶牛之间都有一定距离. 求使C头奶牛头奶牛需要走的路程的最大 ...
- “耐撕”团队2016.04.14站立会议
1. 时间 : 19:20--19:40 共计20分钟 2. 人员 : Z 郑蕊 * 组长 (博客:http://www.cnblogs.com/zhengrui0452/), P 濮成林(博客 ...
- easyUI API(version 1.5)
不分先后,只做记录. jquery+easyui培训文档下载地址: 链接: https://pan.baidu.com/s/1dFgFXk9 密码: jj5d 1 easyui-draggable(拖 ...
- 解决系统打开CHM文件无法正常显示
最近学习servlet下载了一个CHM的帮助手册但是打开后右侧却时空白.试了各种方法都没有成功最后终于找到原因所在. 一般情况下无法显示网页:右键 chm文件属性里最下面有个“解除锁定”,点击“解除锁 ...
- [转]Oracle中存储过程和函数的区别
原文地址:http://blog.csdn.net/tender001/article/details/8066203 存储过程和函数: 例子: //创建过程 create or replace pr ...
- hdu2072 字典树
这题印象深刻,我刚接触acm时,以为这题是水题(因为是中文,又短),一直没做出.现再想想也是.可能也是我以前字符串掌握不好: 这题其实也可以用stl里的map写.这里我用字典树写的.其实这题算简单题了 ...
- TreeSet和TreeMap的输出
如果加入TreeSet和TreeMap的元素没有实现comprable中的compareTo()方法,那么会报错"treeset cannot be cast to java.lang.Co ...
- 学习笔记 --- 最大流Dinic算法
为与机房各位神犇同步,学习下网络流,百度一下发现竟然那么多做法,最后在两种算法中抉择,分别是Dinic和ISAP算法,问过 CA爷后得知其实效率上无异,所以决定跟随Charge的步伐学习Dinic,所 ...
- Spring+C3P0数据库连接池配置
一.xml文件读取.properties文件连接数据库 1.xml文件中的配置 <bean id="dataSourceLocal" name="dataSourc ...