std::deque

template < class T, class Alloc = allocator > class deque;

Double ended queue

deque means double enden queue;

deque (usually pronounced like "deck") is an irregular acronym of double-ended queue. Double-ended queues are sequence containers with dynamic sizes that can be expanded or contracted on both ends (either its front or its back).

Specific libraries may implement deques in different ways, generally as some form of dynamic array. But in any case, they allow for the individual elements to be accessed directly through random access iterators, with storage handled automatically by expanding and contracting the container as needed.

Therefore, they provide a functionality similar to vectors, but with efficient insertion and deletion of elements also at the beginning of the sequence, and not only at its end. But, unlike vectors, deques are not guaranteed(保证) to store all its elements in contiguous(相邻) storage locations: accessing elements in a deque by offsetting a pointer to another element causes undefined behavior.

Both vectors and deques provide a very similar interface and can be used for similar purposes, but internally both work in quite different ways: While vectors use a single array that needs to be occasionally reallocated for growth(有时候,会重新分配), the elements of a deque can be scattered(分散) in different chunks of storage, with the container keeping the necessary information internally to provide direct access to any of its elements in constant time and with a uniform sequential interface (through iterators). Therefore, deques are a little more complex internally than vectors, but this allows them to grow more efficiently under certain circumstances, especially with very long sequences, where reallocations become more expensive.

For operations that involve(包含) frequent insertion or removals of elements at positions other than the beginning or the end, deques perform worse and have less consistent iterators and references than lists and forward lists.

Container properties

  • Sequence: Elements in sequence containers are ordered in a strict linear sequence. Individual elements are accessed by their position in this sequence.
  • Dynamic array: Generally implemented as a dynamic array, it allows direct access to any element in the sequence and provides relatively fast addition/removal of elements at the beginning or the end of the sequence.
  • Allocator-aware: The container uses an allocator object to dynamically handle its storage needs.

Template parameters

  • T: Type of the elements. Aliased as member type deque::value_type.
  • Alloc Type of the allocator object used to define the storage allocation model. By default, the allocator class template is used, which defines the simplest memory allocation model and is value-independent. Aliased as member type deque::allocator_type.

Member types

member type definition notes
value_type The first template parameter (T)
allocator_type The second template parameter (Alloc) defaults to: allocator<value_type>
reference value_type&
const_reference const value_type&
pointer allocator_traits<allocator_type>::pointer for the default allocator: value_type*
const_pointer allocator_traits<allocator_type>::const_pointer for the default allocator: const value_type*
iterator a random access iterator to value_type convertible to const_iterator
const_iterator a random access iterator to const value_type
reverse_iterator reverse_iterator
const_reverse_iterator reverse_iterator<const_iterator>
difference_type a signed integral type, identical to:
iterator_traits::difference_type usually the same as ptrdiff_t
size_type an unsigned integral type that can represent any non-negative value of difference_type usually the same as size_t

Member functions

  • (constructor): Construct deque container (public member function )
  • (destructor): Deque destructor (public member function )
  • operator=: Assign content (public member function )

Iterators:

  • begin: Return iterator to beginning (public member function )
  • end: Return iterator to end (public member function )
  • rbegin: Return reverse iterator to reverse beginning (public member function )
  • rend: Return reverse iterator to reverse end (public member function )
  • cbegin: Return const_iterator to beginning (public member function )
  • cend: Return const_iterator to end (public member function )
  • crbegin: Return const_reverse_iterator to reverse beginning (public member function )
  • crend: Return const_reverse_iterator to reverse end (public member function )

Capacity:

  • size: Return size (public member function )
  • max_size: Return maximum size (public member function )
  • resize: Change size (public member function )
  • empty: Test whether container is empty (public member function )
  • shrink_to_fit Shrink(收缩) to fit (public member function )

Element access:

  • operator[]: Access element (public member function )
  • at: Access element (public member function )
  • front: Access first element (public member function )
  • back: Access last element (public member function )

Modifiers:

  • assign: Assign(分配) container content (public member function )
  • push_back: Add element at the end (public member function )
  • push_front: Insert element at beginning (public member function )
  • pop_back: Delete last element (public member function )
  • pop_front: Delete first element (public member function )
  • insert: Insert elements (public member function )
  • erase: Erase elements (public member function )
  • swap: Swap content (public member function )
  • clear: Clear content (public member function )
  • emplace: Construct and insert element (public member function )
  • emplace_front: Construct and insert element at beginning (public member function )
  • emplace_back: Construct and insert element at the end (public member function )

Allocator:

  • get_allocator: Get allocator (public member function )

Non-member functions overloads

  • relational operators: Relational operators for deque (function )
  • swap Exchanges the contents of two deque containers (function template )

Code Example

#include <iostream>
#include <deque>
#include <vector> using namespace std; int main(int argc, char **argv)
{
deque<int> first; ///< emprt deque of ints
deque<int> second(4, 100); ///< four ints with value 100
/** iterating through second */
deque<int> third(second.begin(),second.end());
deque<int> four(third); ///< a copy of third int myints[] = {11,12,14,13};
deque<int> fifth(myints, myints + sizeof (myints) / sizeof (int) );
for(auto it = fifth.begin(); it != fifth.end(); it++){
cout << *it << "\t";
}
cout << "\n"; /** = */
deque<int> six(3);
deque<int> seven(5);
seven = six;
six = deque<int>();
cout << "size of six:" << int (six.size()) << '\n';
cout << "size of seven:" << int (seven.size()) << '\n';
/** output : 0 , 3 */ /**
* The code sets a sequence of 10 numbers as the initial content for
* mydeque. It then uses resize first to set the container size to 5,
* then to extend its size to 8 with values of 100 for its new elements,
* and finally it extends its size to 12 with their default values
* (for int elements this is zero). Output:
* */
deque<int> eight;
for(int i=0; i < 10; i++){
eight.push_back(i);
}
cout << '\n' << "Init deque : ";
for(auto it=eight.begin(); it != eight.end(); it++){
cout << *it << '\t';
}
/** output:0 1 2 3 4 5 6 7 8 9 */
eight.resize(5);
cout << '\n' << "deque::resize(5): ";
for(auto it=eight.begin(); it != eight.end(); it++){
cout << *it << '\t';
}
/** output:0 1 2 3 4 */
eight.resize(8,100);
cout << '\n' << "deque::resize(8,100): ";
for(auto it=eight.begin(); it != eight.end(); it++){
cout << *it << '\t';
}
/** output:0 1 2 3 4 100 100 100 */
eight.resize(12);
cout << '\n' << "deque::resize(12): ";
for(auto it=eight.begin(); it != eight.end(); it++){
cout << *it << '\t';
}
/** output:0 1 2 3 4 100 100 100 0 0 0 0*/ /**
* Requests the container to reduce its memory usage to fit its size.
* A deque container may have more memory allocated than needed to hold
* its current elements: this is because most libraries implement deque
* as a dynamic array that can keep the allocated space of removed
* elements or allocate additional capacity in advance to allow for faster
* insertion operations.
* This function requests that the memory usage is adapted to the current
* size of the container, but the request is non-binding, and the
* container implementation is free to optimize its memory usage otherwise.
* Note that this function does not change the size of the container
* (for that, see resize instead).
*/
deque<int> nine(100);
cout << '\n' << "deque::size(): "<< int ( nine.size() );
nine.resize(10);
cout << '\n' << "deque::resize(10): "<< int ( nine.size() );
for(int i=0; i < 5; i++){
nine[i] = i;
}
nine.shrink_to_fit(); /** assign */
deque<int> ten1;
deque<int> ten2;
deque<int> ten3; ten1.assign(7,100);
ten2.assign( ten1.begin()+1, ten1.end()-1 );
int myint2[] = {1776,7,4};
ten3.assign(myint2,myint2+3);
cout << '\n' << "size of ten1:" << int (ten1.size());
cout << '\n' << "size of ten2:" << int (ten2.size());
cout << '\n' << "size of ten3:" << int (ten3.size()); deque<int> firstQue;
for(int i=0; i < 6; i++)
firstQue.push_back(i);
/** 0 1 2 3 4 5 */
auto it = firstQue.begin() + 1;
it = firstQue.insert(it, 10);
/** 0 10 1 2 3 4 5 */
firstQue.insert(it,2,20);
/** 0 20 20 10 1 2 3 4 5 */
it = firstQue.begin() + 2; vector<int> vector(2,30);
firstQue.insert(it, vector.begin(),vector.end());
/** 0 20 30 30 20 10 1 2 3 4 5 */
cout << '\n';
for(auto it = firstQue.begin(); it != firstQue.end(); it++){
cout << *it << '\t';
} /** erase the 6th element */
firstQue.erase(firstQue.begin() + 5);
/** 0 20 30 30 20 1 2 3 4 5 */
firstQue.erase(firstQue.begin(),firstQue.begin() + 3);
/** 30 20 1 2 3 4 5 */ deque<int> foo(3,100);
deque<int> bar(5,200);
foo.swap(bar);
/** foo: 200 200 200 200 200 */
/** bar: 100 100 100 */
/** 队列的交换类型必须相同,长度可以不同,但是数组的交换,类型和长度必须相同 */ /** The container is extended by inserting a new element at position. This
* new element is constructed in place using args as the arguments for its
* construction. */
it = foo.emplace(foo.begin()+1, 100);
/** 200 100 200 200 200 200 */
foo.emplace(it, 300);
/** 200 300 100 200 200 200 200 */
foo.emplace(foo.end(),300);
/** 200 300 100 200 200 200 200 300 */ /**
* 有什么作用呢?
* Returns a copy of the allocator object associated with the deque object
* */
deque<int> secondQue;
int *p;
unsigned int i;
/**
* allocate an array with space for 5 elements using deque's allocator:
* */
p = secondQue.get_allocator().allocate(5);
/**construct values in-place on the array: */
for(i=0; i < 5;i++){
secondQue.get_allocator().construct(&p[i],i);
} cout << '\n';
for(i=0; i < 5;i++){
cout << p[i] << '\t';
} /**destroy and deallocate */
for(i=0; i < 5;i++){
secondQue.get_allocator().destroy(&p[i]);
}
secondQue.get_allocator().deallocate(p,5); return 0;
}

C++ std::deque的更多相关文章

  1. std::deque

    deque容器为一个给定类型的元素进行线性处理,像向量一样,它能够快速地随机访问任一个元素,并且能够高效地插入和删除容器的尾部元素.但它又与vector不同,deque支持高效插入和删除容器的头部元素 ...

  2. boost::interprocess::managed_shared_memory(2)(std::deque)

    struct shareDataEx : shareData { int index; int total_size; }; typedef managed_shared_memory::segmen ...

  3. C++ std::deque 基本用法

    #include <iostream> #include <string> #include <deque> // https://zh.cppreference. ...

  4. 关于VECTOR和DEQUE

    http://www.cnblogs.com/ixnehc/archive/2008/09/02/1282356.html  *.先说内部结构.vector就是一块连续的内存,这块连续的内存会随着成员 ...

  5. [翻译] C++ STL容器参考手册(第二章 <deque>)

    返回总册 本章节原文:http://www.cplusplus.com/reference/deque/deque/ 1. std::deque template < class T, clas ...

  6. STL deque详解

    英文原文:http://www.codeproject.com/Articles/5425/An-In-Depth-Study-of-the-STL-Deque-Container 绪言 这篇文章深入 ...

  7. BZOJ 3403: [Usaco2009 Open]Cow Line 直线上的牛( deque )

    直接用STL的的deque就好了... ---------------------------------------------------------------------- #include& ...

  8. C++在stack的deque实现

     本文实现STL在stack大部分功能,同时加入了许多功能. 请注意以下几点: 1.Stack它是一个适配器,在底部vector.list.deque等实现 2.Stack不含有迭代器 在本例中, ...

  9. STL deque

      STL之deque容器详解 Deque 容器 deque容器是C++标准模版库(STL,Standard Template Library)中的部分内容.deque容器类与vector类似,支持随 ...

随机推荐

  1. iOS开源项目周报0105

    由OpenDigg 出品的iOS开源项目周报第四期来啦.我们的iOS开源周报集合了OpenDigg一周来新收录的优质的iOS开发方面的开源项目,方便iOS开发人员便捷的找到自己需要的项目工具等. He ...

  2. 探索ASP.NET MVC5系列之~~~4.模型篇---包含模型常用特性和过度提交防御

    其实任何资料里面的任何知识点都无所谓,都是不重要的,重要的是学习方法,自行摸索的过程(不妥之处欢迎指正) 汇总:http://www.cnblogs.com/dunitian/p/4822808.ht ...

  3. System.FormatException: GUID 应包含带 4 个短划线的 32 位数(xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx)。

    在NHibernate数据库查询中出现了这个错误,由于是数据库是mysql的,当定义的字段为char(36)的时候就会出现这个错误. [解决方法] 将char(36) 改成varchar(40)就行了 ...

  4. [.NET] C# 知识回顾 - Event 事件

    C# 知识回顾 - Event 事件 [博主]反骨仔 [原文]http://www.cnblogs.com/liqingwen/p/6060297.html 序 昨天,通过<C# 知识回顾 - ...

  5. JQuery的基础和应用

    <参考文档>   1.什么是?    DOM的作用:提供了一种动态的操作HTML元素的方法.    jQuery是一个优秀的js库.用来操作HTML元素的工具.    jQuery和DOM ...

  6. 说说BPM数据表和日志表中几个状态字段的详细解释

    有个客户说需要根据这些字段的值作为判断条件做一些定制化需求,所以需要知道这些字段的名词解释,以及里面存储的值具体代表什么意思 我只好为你们整理奉上这些了! Open Work Sheet  0 Sav ...

  7. android Notification介绍

    如果要添加一个Notification,可以按照以下几个步骤 1:获取NotificationManager: NotificationManager m_NotificationManager=(N ...

  8. VMware下对虚拟机Ubuntu14系统所在分区sda1进行磁盘扩容

    VMware下对虚拟机Ubuntu14系统所在分区sda1进行磁盘扩容 一般来说,在对虚拟机里的Ubuntu下的磁盘进行扩容时,都是添加新的分区,而并不是对其系统所在分区进行扩容,如在此链接中http ...

  9. photoshop:无法完成请求 因为暂存盘已满

    今天photoshop打开一个问题,提醒:无法完成请求因为暂存盘已满 不用担心这个问题很好解决可能是你做的图比较大并不需要清理C盘空间 选择:编辑→首选项→暂存盘 设置第一暂存盘为D盘或E盘 总之 第 ...

  10. css 填坑常用代码分享

    以下是常用的代码收集,没有任何技术含量,只是填坑的积累.转载请注明出处,谢谢. 因为提交比较麻烦,后来转置github:https://github.com/jsfront/src/blob/mast ...