BZOJ3739 : DZY loves math VIII
显然当且仅当$\gcd(i,j)=1$时才对答案有贡献,化简得
\[\begin{eqnarray*}
ans&=&\sum_{i=1}^n\sum_{j=1}^i\mu(ij)[\gcd(i,j)=1]\\
&=&\sum_{i=1}^n\sum_{j=1}^i\mu(ij)\sum_{d|i,d|j}\mu(d)\\
&=&\sum_{i=1}^n\mu(i)\sum_{d|i}\mu(d)\sum_{j=1}^{\frac{i}{d}}\mu(dj)
\end{eqnarray*}\]
设
\[S(i,d)=\sum_{j=1}^{\frac{i}{d}}\mu(dj)\]
则
\[ans=\sum_{i=1}^n\mu(i)\sum_{d|i}\mu(d)S(i,d)\]
当且仅当$i$是square-free的时候,才对答案有贡献。此时将$i$分解质因数,然后暴力搜索所有约数,一边搜索一边更新$S(i,d)$以及$ans$即可。
#include<cstdio>
#define N 10000010
int T,n,i,j,A,B,q[1010],tot,p[700000],v[N],s[N];char mu[N];short f[N];
void dfs(int x,int y){
if(x==tot){
f[y]+=A;
if(mu[y]>0)B+=f[y];else B-=f[y];
return;
}
dfs(x+1,y*p[x]),dfs(x+1,y);
}
int main(){
scanf("%d",&T);
for(i=1;i<=T;i++){
scanf("%d",&q[i]);
if(q[i]>n)n=q[i];
}
for(mu[1]=v[1]=1,i=2;i<=n;i++){
if(!v[i])p[tot++]=v[i]=i,mu[i]=-1;
for(j=0;j<tot;j++){
if(i*p[j]>n)break;
v[i*p[j]]=p[j];
if(i%p[j])mu[i*p[j]]=-mu[i];else break;
}
}
for(i=1;i<=n;i++){
s[i]=s[i-1];
if(mu[i]){
for(tot=0,j=i;j>1;j/=v[j])p[tot++]=v[j];
A=mu[i],B=0,dfs(0,1);
if(mu[i]>0)s[i]+=B;
if(mu[i]<0)s[i]-=B;
}
}
for(i=1;i<=T;i++)printf("%d\n",s[q[i]]);
return 0;
}
BZOJ3739 : DZY loves math VIII的更多相关文章
- [BZOJ3561] DZY Loves Math VI
(14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...
- BZOJ 3309: DZY Loves Math
3309: DZY Loves Math Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 761 Solved: 401[Submit][Status ...
- 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化
3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...
- BZOJ 3512: DZY Loves Math IV [杜教筛]
3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...
- ●BZOJ 3309 DZY Loves Math
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...
- DZY Loves Math 系列详细题解
BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...
- 【BZOJ3561】DZY Loves Math VI (数论)
[BZOJ3561]DZY Loves Math VI (数论) 题面 BZOJ 题解 \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^m\sum_ ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- 【BZOJ3309】DZY Loves Math(莫比乌斯反演)
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因 ...
随机推荐
- NGUI 粒子显示在上级
http://bbs.taikr.com/thread-2272-1-1.html [NGUI]3.0+版本,粒子在UI后面显示 -- : 48人阅读 评论() 收藏 举报 [Unity3D][NGU ...
- map遍历
Set<Map.Entry<String,String>> ss = params.entrySet(); for(Map.Entry<String,String> ...
- Java获取、删除文件和目录
package javatest; import java.io.File; import java.util.ArrayList; import java.util.regex.Pattern; c ...
- Python序列切片的注意事项
a=[1,2,3,4,5,6,7,8,9,10] 1)普通切片,形如array[m:n],只包含起始索引m,和不被包含在结果内的终点索引n, 注意终点索引可以大于序列的大小(长度),若终点索引大于序列 ...
- android dialog 模拟新浪、腾讯title弹框效果
http://blog.csdn.net/jj120522/article/details/7764183 首先我们看一下新浪微博的效果(其它就是一个dialog): 点 ...
- Linux&shell之高级Shell脚本编程-创建函数
写在前面:案例.常用.归类.解释说明.(By Jim) 使用函数 #!/bin/bash # testing the script function myfun { echo "This i ...
- C语言指针总结
C语言中的精华是什么,答曰指针,这也是C语言中唯一的难点. C是对底层操作非常方便的语言,而底层操作中用到最多的就是指针,以后从事嵌入式开发的朋友们,指针将陪伴我们终身. 本文将从八个常见的方面来透视 ...
- Ninject学习笔记<二>
本文转载自kuangkro 如果给您带来不便请联系博主 一.控制反转和依赖注入 Ninject是一个轻量级的基于.Net平台的依赖注入(IOC)框架.所谓的IOC,即控制反转(Inversion of ...
- 【转】 JSONObject使用方法
随笔- 46 文章- 0 评论- 132 JSONObject简介 本节摘要:之前对JSON做了一次简单的介 绍,并把JSON和XML做了一个简单的比较:那么,我就在想,如果是一个json格式的字 ...
- codeforces A. Vasya and Digital Root 解题报告
题目链接:http://codeforces.com/problemset/problem/355/A 题目意思:找出某个经过最多四次dr(n)操作等于d的k位数. 千万不要想得太复杂,想得越简单 ...