$C_{N+M}^N=\frac{(N+M)!}{N!M!}$

考虑求出$ans\bmod 10^9$的值

$10^9=2^9\times5^9$

以$2^9$为例,先预处理出$1$..$2^9$中不是2的倍数的数的前缀积s[],显然$n!\bmod 2^9$有着长度为$2^9$的循环节

将答案表示成$a\times2^b$的形式,$a$与$2^9$互质,可以直接逆元,b直接相减即可

cal(n).a=s[n%512]*pow(s[512],n/512)*cal(n/2).a

cal(n).b=n/2+cal(n/2).b

如此递归计算即可

答案中末尾0的个数为min(2的个数,5的个数)

以$2^9$为例,除以10相当于乘上5的逆元,同时2的个数减1

分别算出答案后再用中国剩余定理合并即可

#include<cstdio>
typedef long long ll;
ll n,m,k,x,y,P,B,s[2000000],res[2],del,ans,i,T=1;
ll exgcd(ll a,ll b){
if(!b)return x=1,y=0,a;
ll d=exgcd(b,a%b),t=x;
return x=y,y=t-a/b*y,d;
}
ll rev(ll a,ll P){exgcd(a,P);while(x<0)x+=P;return x%P;}
ll pow(ll a,ll b,ll P){ll t=1;for(;b;b>>=1LL,a=a*a%P)if(b&1LL)t=t*a%P;return t;}
struct Num{
ll a,b;
Num(){a=1,b=0;}
Num(ll _a,ll _b){a=_a,b=_b;}
Num operator*(Num x){return Num(a*x.a%P,b+x.b);}
Num operator/(Num x){return Num(a*rev(x.a,P)%P,b-x.b);}
}now[2];
Num cal(ll n){return n?Num(s[n%P]*pow(s[P],n/P,P)%P,n/B)*cal(n/B):Num(1,0);}
void pre(){for(i=s[0]=1;i<P;i++)if(i%B)s[i]=s[i-1]*i%P;else s[i]=s[i-1];s[P]=s[P-1];}
int main(){
scanf("%lld%lld%lld",&n,&m,&k);
while(k--)T*=10;
B=2,P=512,pre();
now[0]=cal(n+m)/cal(n)/cal(m);
del=now[0].b;
B=5,P=1953125,pre();
now[1]=cal(n+m)/cal(n)/cal(m);
if(del>now[1].b)del=now[1].b;
while(del--)P=512,now[0]=now[0]/Num(5,1),P=1953125,now[1]=now[1]/Num(2,1);
B=2,P=512,res[0]=now[0].a*pow(B,now[0].b,P)%P;
B=5,P=1953125,res[1]=now[1].a*pow(B,now[1].b,P)%P;
ans=(1953125LL*rev(1953125,512)%T*res[0]%T+512LL*rev(512,1953125)%T*res[1]%T)%T;
while(ans*10<T)putchar('0'),T/=10;
return printf("%lld",ans),0;
}

  

BZOJ3738 : [Ontak2013]Kapitał的更多相关文章

  1. BZOJ3738 [Ontak2013]Kapitał 【扩展Lucas】

    题目链接 BZOJ3738 题解 复习 同上 但是为了消去因子\(10\),处理\(2^k\)的时候,乘回\(2^{k_1}\)时,应同时计算\(5^{k_2}\) 如果\(k_1 \ge k_2\) ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. BZOJ3734 : [Ontak2013]Miny

    将所有炸弹按坐标排序 x<-y连边表示x爆炸了y也会爆炸 如果是DAG则直接拓扑排序+DP求出每个点出发能走到的最左端和最右端的点 有环则SCC缩点后再拓扑 用线段树优化建图的过程 边数$O(n ...

随机推荐

  1. cocos2d::Vector

    C++中的vector使用范例 一.概述 vector是C++标准模板库中的部分内容,它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库.vector是一个容器,它能够存放各种类型的对象,简 ...

  2. [BZOJ2423][HAOI2010]最长公共子序列

    [BZOJ2423][HAOI2010]最长公共子序列 试题描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x ...

  3. Coursera台大机器学习技法课程笔记04-Soft-Margin Support Vector Machine

    之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft S ...

  4. failed to load session "ubuntu"

    https://answers.launchpad.net/ubuntu/+source/gnome-desktop/+question/211792

  5. JAVA 中BIO,NIO,AIO的理解

    [转自]http://qindongliang.iteye.com/blog/2018539 ?????????????????????在高性能的IO体系设计中,有几个名词概念常常会使我们感到迷惑不解 ...

  6. codeforces 459C Pashmak and Buses 解题报告

    题目链接:http://codeforces.com/problemset/problem/459/C 题目意思:有 n 个 students,k 辆 buses.问是否能对 n 个students安 ...

  7. c标签设置jsp页面的绝对路径

    <%@ page language="java" pageEncoding="UTF-8"%><%@ taglib prefix=" ...

  8. svn插件subclipse使用http代理同步svn时出现异常(解决)

    现象描述: 对项目进行“与资源库进行同步”时弹出对话框显示以下错误信息: 同步 SVNStatusSubscriber 时报告了错误.1 中的 0 个资源已经同步. 同步 /MMonitorLogis ...

  9. Oracle错误代码大全

    Oracle错误代码大全——最新.最全的Oracle错误代码 对快速查找oracle数据库错误原因很有帮助 ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ...

  10. 《Java并发编程实战》学习笔记 线程安全、共享对象和组合对象

    Java Concurrency in Practice,一本完美的Java并发参考手册. 查看豆瓣读书 推荐:InfoQ迷你书<Java并发编程的艺术> 第一章 介绍 线程的优势:充分利 ...