Computer Science An Overview _J. Glenn Brookshear _11th Edition

The task of understanding general images is usually approached as a two-

step process: (1)
image processing,
which refers to identifying characteristics of
the image, and (2)
image analysis,
which refers to the process of understanding
what these characteristics mean. We have already observed this dichotomy in
the context of recognizing symbols by means of their geometric features. In that
situation, we found image processing represented by the process of identifying
the geometric features found in the image and image analysis represented by the
process of identifying the meaning of those features.
 
Image processing entails numerous topics. One is edge enhancement, which is

the process of applying mathematical techniques to clarify the boundaries between
regions in an image. In a sense, edge enhancement is an attempt to convert a
photograph into a line drawing. Another activity in image analysis is known as
region finding. This is the process of identifying those areas in an image that have

common properties such as brightness, color, or texture. Such a region probably
represents a section of the image that belongs to a single object. (It is the ability to
recognize regions that allows computers to add color to old-fashioned black and
white motion pictures.) Still another activity within the scope of image processing
is smoothing, which is the process of removing flaws in the image. Smoothing keeps
errors in the image from confusing the other image-processing steps, but too much
smoothing can cause the loss of important information as well.
Smoothing, edge enhancement, and region finding are all steps toward iden-
tifying the various components in an image. Image analysis is the process of
determining what these components represent and ultimately what the image
means. Here one faces such problems as recognizing partially obstructed objects
from different perspectives. One approach to image analysis is to start with an
assumption about what the image might be and then try to associate the compo-
nents in the image with the objects whose presence is conjectured. This appears
to be an approach applied by humans. For instance, we sometimes find it hard to
recognize an unexpected object in a setting in which our vision is blurred, but
once we have a clue to what the object might be, we can easily identify it.
 

验证码识别 edge enhancement - 轮廓增强 region finding - 区域查找的更多相关文章

  1. 简单的验证码识别(opecv)

    opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 :  一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理:  验证码 ...

  2. 简单验证码识别(matlab)

    简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则 ...

  3. [验证码识别技术]字符验证码杀手--CNN

    字符验证码杀手--CNN 1 abstract 目前随着深度学习,越来越蓬勃的发展,在图像识别和语音识别中也表现出了强大的生产力.对于普通的深度学习爱好者来说,一上来就去跑那边公开的大型数据库,比如I ...

  4. Pyhthon爬虫其之验证码识别

    背景 现在的登录系统几乎都是带验证手段的,至于验证的手段也是五花八门,当然用的最多的还是验证码.不过纯粹验证码识已经是很落后的东西了,现在比较多见的是滑动验证,滑动拼图验证(这个还能往里面加广告).点 ...

  5. windows下简单验证码识别——完美验证码识别系统

    此文已由作者徐迪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 讲到验证码识别,大家第一个可能想到tesseract.诚然,对于OCR而言,tesseract确实很强大,自带 ...

  6. python之web自动化验证码识别解决方案

    验证码识别解决方案 对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动 ...

  7. 基于SVM的字母验证码识别

    基于SVM的字母验证码识别 摘要 本文研究的问题是包含数字和字母的字符验证码的识别.我们采用的是传统的字符分割识别方法,首先将图像中的字符分割出来,然后再对单字符进行识别.首先通过图像的初步去噪.滤波 ...

  8. 字符型图片验证码识别完整过程及Python实现

    字符型图片验证码识别完整过程及Python实现 1   摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越 ...

  9. 验证码识别<1>

    1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? p ...

随机推荐

  1. 解决Inno Setup制作安装包无法创建桌面快捷方式的问题

    转自:http://yedward.net/?id=104 昨天想把个java程序做成exe安装软件,然后就去下载了Inno Setup这个软件安装包制作软件,Inno Setup这个软件确实非常好用 ...

  2. 在Linux中创建静态库.a和动态库.so

    转自:http://www.cnblogs.com/laojie4321/archive/2012/03/28/2421056.html 在Linux中创建静态库.a和动态库.so 我们通常把一些公用 ...

  3. matlab练习程序(最小包围矩形)

    又是计算几何,我感觉最近对计算几何上瘾了. 当然,工作上也会用一些,不过工作上一般直接调用boost的geometry库. 上次写过最小包围圆,这次是最小包围矩形,要比最小包围圆复杂些. 最小包围矩形 ...

  4. Codeforces Round #318 [RussianCodeCup Thanks-Round] (Div. 2)C. Bear and Poker

                                                  C. Bear and Poker                                     ...

  5. 电赛总结(二)——AD芯片总结之高速AD9224

    一.特性参数 1.12位高速AD 2.高达40MSPS的高速AD芯片 3.噪声小 二.芯片管脚图 三.管脚功能说明 管脚名称 功能 CLK 参考时钟输入端 BIT12-1 数据输出端(1是低位,12是 ...

  6. eclipse下导入工程的小问题

  7. HealthKit开发教程之HealthKit的主要类型数据

    HealthKit开发教程之HealthKit的主要类型数据 在HealthKit中,我们将最常用到的数据称之为主要数据.主要数据基本上有三种:长度类型的数据.质量类型的数据.能量类型的数据.本节将主 ...

  8. HDU4859 海岸线(最小割)

    题目大概就是说一个n*m的地图,地图上每一块是陆地或浅海域或深海域,可以填充若干个浅海域使其变为陆地,问能得到的最长的陆地海岸线是多少. 也是很有意思的一道题. 一开始想歪了,想着,不考虑海岸线重合的 ...

  9. Codeforces 161D Distance in Tree(树的点分治)

    题目大概是,给一棵树,统计距离为k的点对数. 不会DP啊..点分治的思路比较直观,啪啪啪敲完然后AC了.具体来说是这样的: 树上任何两点的路径都可以看成是一条过某棵子树根的路径,即任何一条路径都可以由 ...

  10. Codeforces 498C Array and Operations(最大流)

    题目是给一些数和<数对>的下标,然后进行操作:对某个<数对>中的两个数同时除以一个都能被它们整除且不等于1的数,要求的就是最多能进行多少次操作. 除数一定是素数,就是要决定某素 ...