「JOI 2014 Final」飞天鼠

显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0。

到达一个点有两种情况:到达高度为0和不为0。

对于高度不为0的情况,显然花费的时间越少高度越高(每下降1m都要1单位时间),而必然高度越高越好,因此只需求花费的最少时间。

对于高度为0的情况,显然花费的时间越少越好。

高度不为0的情况比高度为0的情况要优越,而且事实上,高度不为0的情况花费必然会小于高度为0的情况。因此两种情况可以直接合并。

故可以直接dijkstra跑一遍。

复杂度\(o(mlog(m))\)。

#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
using namespace std;
typedef long long ll;
char buf[15000000],*p1=buf,*p2=buf;
#define Getchar() p1==p2?EOF:*p1++
void in(int &r) {
static char c;
r=0;
while(c=Getchar(),c<48);
do r=(r<<1)+(r<<3)+(c^48);
while(c=Getchar(),c>47);
}
const int mn=100005;
const int mm=300005;
int head[mn],ne[mm<<1],to[mm<<1],cost[mm<<1],cnt1;
#define link_edge(a,b,c) to[++cnt1]=b,ne[cnt1]=head[a],head[a]=cnt1,cost[cnt1]=c
#define travel(x) for(int q(head[x]);q;q=ne[q])
int val[mn];
int n,m;
ll sum[mn];
int H[mn];
bool mark[mn];
struct node {
ll v;
int id;
bool operator <(const node &A)const {
return v>A.v;
}
};
priority_queue<node> qw;
void WA(int at) { rep(q,1,n)sum[q]=1e18;
qw.push({0,1}),H[1]=at,sum[1]=0;
ll v;
while(!qw.empty()) {
node now=qw.top();
qw.pop();
if(mark[now.id])continue;
mark[now.id]=1;
int h=H[now.id];
travel(now.id) {
if(h-cost[q]>val[to[q]]) {
v=sum[now.id]+h-cost[q]-val[to[q]]+cost[q];
if(sum[to[q]]>v) {
sum[to[q]]=v;
H[to[q]]=val[to[q]];
qw.push({sum[to[q]],to[q]});
}
} else if(h-cost[q]<0) {
v=sum[now.id]+cost[q]-h+cost[q];
if(sum[to[q]]>v) {
sum[to[q]]=v;
H[to[q]]=0;
qw.push({sum[to[q]],to[q]});
}
} else {
if(sum[to[q]]>sum[now.id]+cost[q]) {
sum[to[q]]=sum[now.id]+cost[q];
H[to[q]]=h-cost[q];
qw.push({sum[to[q]],to[q]});
}
}
}
}
}
int main() {
p2=buf+fread(buf,1,15000000,stdin);
int at;
in(n),in(m),in(at);
rep(q,1,n)in(val[q]);
int a,b,c;
rep(q,1,m) {
in(a),in(b),in(c);
if(val[a]>=c)link_edge(a,b,c);
if(val[b]>=c)link_edge(b,a,c);
}
WA(at);
if(sum[n]==1e18)puts("-1");
else printf("%lld\n",sum[n]+val[n]-H[n]);
return 0;
}

「JOI 2014 Final」飞天鼠的更多相关文章

  1. 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)

    [题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...

  2. loj 2759「JOI 2014 Final」飞天鼠

    loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...

  3. 【2018.10.1】「JOI 2014 Final」年轮蛋糕

    题面 一看到求“最小值的最大值”这种问题,就能想到二分了. 二分答案,然后我们要把一圈分成三块,使这三块的大小都$\geq mid$.做法是把环展开成2倍长度的链,先钦定一个起点,然后根据前缀和再二分 ...

  4. 「JOI 2014 Final」裁剪线

    做法一 首先将边界也视作四条裁剪线,整个平面作为一张纸,视存在 \(y = -\infty, y = +\infty, x = -\infty, x = +\infty\) 四条直线. 按照纵坐标依次 ...

  5. LOJ#2351. 「JOI 2018 Final」毒蛇越狱

    LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...

  6. 「JOI 2017 Final」JOIOI 王国

    「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...

  7. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  8. 「JOI 2015 Final」城墙

    「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...

  9. 「JOI 2015 Final」舞会

    「JOI 2015 Final」舞会 略微思考一下即可知该过程可以化为一棵树.(3个贵族中选择1个,即新建一个节点连向这3个贵族). 该树的结点个数为\(2n\). 考虑二分答案mid. 判定的是公主 ...

随机推荐

  1. Java基础(八)——IO流1_字节流、字符流

    一.概述 1.介绍 I/O是 Input/Output 的缩写,IO流用来处理设备之间的数据传输,如读/写文件,网络通讯等.Java对数据的操作是通过流的方式进行.java.io 包下提供了各种&qu ...

  2. 「AHOI2013」 差异

    知识点: SA,线段树,单调栈 原题面 Loj Luogu 题意简述 给定一长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示从第 \(i\) 个字符开始的后缀,求: \[\sum_{ ...

  3. 「THUSCH 2017」大魔法师

    Description 大魔法师小 L 制作了 \(n\) 个魔力水晶球,每个水晶球有水.火.土三个属性的能量值.小 L 把这 \(n\) 个水晶球在地上从前向后排成一行,然后开始今天的魔法表演. 我 ...

  4. Going Deeper with Convolutions (GoogLeNet)

    目录 代码 Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. computer vision and pattern ...

  5. CS5218替代AG6310方案|设计DP转HDMI转换方案|替代AG6310方案

    AG6310是一款实现显示端DP口转HDMI数据转换器.AG6310是一款单芯片解决方案,通过DP端口连接器传输视频和音频流,其DP1.2支持可配置的1.2和4通道,分别为1.62Gbps.2.7Gb ...

  6. Android程序设计基础 • 【目录】

    章节 内容 实践练习 Android程序设计基础作业目录 (作业笔记) 第1章 Android程序设计基础 • [第1章 Android程序入门] 第2章 Android程序设计基础 • [第2章 基 ...

  7. Elasticsearch集群安装Version6.2.2

    Elasticsearch集群安装, 基于Elasticsearch6.2.2版本, 在Linux上安装Elasticsearch集群. 1.安装规划 IP HostName Service Mast ...

  8. 解构插槽 Prop

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"/> <link rel ...

  9. 初识python 之 smtplib 发送(dolphinscheduler任务监测)邮件

    需求 监测dolphinscheduler调度系统,任务执行异常情况.如有异常,则发送邮件通知. 处理思路 因DS本身自带的邮件发送功能,不能正常发送邮件. 故而,通过查询DS源数据表,获取当前任务执 ...

  10. spring boot 使用 mybatis 开启事务回滚 的总结

    1.前言 以前没有使用mybatis,可以关闭自动提交,然后做sql操作,对操作进行catch捕获异常, 如果没有异常则commit 提交 ,有异常则 rollback 回滚,新增的数据则删除 ,修改 ...