Source: Brain voyager support

Theoretical Background

Spatial smoothing means that data points are averaged with their neighbours. This has the effect of a low pass filter meaning that high frequencies of the signal are removed from the data while enhancing low frequencies. The result is that sharp "edges" of the images are blurred and spatial correlation within the data is more pronounced (see figure below).

Effect Of Smoothing

The approach of spatial smoothing is commonly used in fMRI studies and is justified by the fact that fMRI data inherently show spatial correlations due to functional similarities of adjacent brain regions and the blurring of the vascular system.

The standard procedure of spatial smoothing is employed by convolving the fMRI signal with a Gaussian function of a specific width.This so called Gaussian kernel is a kernel with the shape of a normal distribution curve. In the figure below you can see a standard Gaussian with a mean of 0 and a standard deviation of 1.

Standard Gaussian

The size of the Gaussian kernel defines the "width" of the curve which determines in turn how much the data is smoothed. The width is not expressed in terms of the standard deviation σ, as customary in statistics, but with the Full Width at Half Maximum (FWHM). In this case the FWHM would be 2.35: The maximum of this curve is y = 0.4 at x = 0. The half maximum is y = 0.2 at x = -1.175 and at x = 1.175. Therefore, the full width of the curve at the point of the half maximum is about 2.35. Nevertheless, the FWHM is also related to the standard deviation σ as follows: FWHM = σ √(8 ln(2)).

Benefits

  • Improvement of the signal to noise ratio (SNR) => Increasing sensitivity

    According to the matched filter theorem, the SNR reaches its maximum when the filter width matches the expected signal width. This, in turn, is of course dependent on the experimental design and the functional brain areas under investigation, e.g. Do you expect a narrow signal in the thalamus versus more extensive activations in the occipital lobe? Therefore, if a signal with a FWHM of 8 mm is expected the applied kernel size should be 8 mm as well.

  • Improving validity of the statistical tests by making the error distribution more normal

    Most parametric tests assume normal error distributions and according to the central limit theorem the distribution of an average tends to be normal with a sufficiently large number of independent observations being averaged.

  • Accommodation of anatomical and functional variations between subjects

    In multi-subject studies, individual brains are coregistered to each other to establish spatial correspondence between the different brains. Still, because of the substantial variation in individual brains, activated areas are rarely represented in exactly the same voxels. To increase the overlap of activated brain regions across subjects smoothing can be applied.

Drawbacks

  • Reduction of spatial resolution of the data

    Spatial smoothing results always in reduced spatial resolution of the data. Therefore, it is important to decide whether a precise localization of the activations is important. However, even worse, if the filter width is set too small, there is practically no positive effect on the SNR while the spatial resolution is reduced.

  • Edge Artifacts

    Along the edges of the brain, brain voxels are smoothed with non-brain voxels, resulting in a dark ring around the brain which might be mistaken for hypoactivity.

  • Merging

    If activation peaks are less than twice the FWHM apart they are detected as a single activation rather than two separated ones.

  • Extinction

    If the filter width is set too large, especially small meaningful activations might be attenuated below the significance threshold.

  • Mislocalization of activation peaks

    As presented by Mikl and colleagues (2008) spatial smoothing almost unavoidably results in shifts of activation peaks. Therefore, as already mentioned above, it is crucial to decide what amount of spatial accuracy is required.

fMRI: spatial smoothing的更多相关文章

  1. Smoothing in fMRI analysis (FAQ)

    Source: http://mindhive.mit.edu/node/112 1. What is smoothing? "Smoothing" is generally us ...

  2. fsl的feat软件分包使用笔记

    introduction: 1. feat 是一种基于模型的fmri数据分析方法. 2. feat 首先使用顺手,至少看起来,比spm漂亮多了. feat是按照正常人的使用方法去设计的. spm 由于 ...

  3. 详解卷积神经网络(CNN)在语音识别中的应用

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老 ...

  4. 卷积神经网络(CNN)在语音识别中的应用

    前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老师将前馈神经网络FFDNN(Feed Forward Deep Neur ...

  5. 对抗防御之对抗样本检测(一):Feature Squeezing

    引言 在之前的文章中,我们介绍了对抗样本和对抗攻击的方法.在该系列文章中,我们介绍一种对抗样本防御的策略--对抗样本检测,可以通过检测对抗样本来强化DNN模型.本篇文章论述其中一种方法:feature ...

  6. How Do Vision Transformers Work?[2202.06709] - 论文研读系列(2) 个人笔记

    [论文简析]How Do Vision Transformers Work?[2202.06709] 论文题目:How Do Vision Transformers Work? 论文地址:http:/ ...

  7. fmri降噪,利用spatial+temporal信息

    1.基于小波+高斯模型 <SPATIOTEMPORAL DENOISING AND CLUSTERING OF FMRI DATA>

  8. SMOOTHING (LOWPASS) SPATIAL FILTERS

    目录 FILTERS Box Filter Kernels Lowpass Gaussian Filter Kernels Order-Statistic (Nonlinear) Filters Go ...

  9. 在fmri研究中,cca的应用历史

    1.02年ola是第一个应用cca在fmri激活检测上的学者. <exploratory fmri analysis by autocorrelation maximization> 2. ...

随机推荐

  1. Maven学习随笔二——Maven初始配置

    到现在为止,我对maven的理解是,跟svn差不多,帮我们管理项目的工具,到底是不是这样,拭目以待!! 弱弱解释,svn是什么? 简单的说,您可以把SVN当成您的备份服务器,更好的是,他可以帮您记住每 ...

  2. 手把手教你用Python抓取AWS的日志(CloudTrail)数据

    数据时代,利用数据做决策是大数据的核心价值. 本文手把手,教你使用python进行AWS的CloudTrail配置,进行日志抓取.进行数据分析,发现数据价值! 如今是云的时代,许多公司都把自己的IT架 ...

  3. jQuery切换网页皮肤保存到Cookie实例

    效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/25.htm 以下是源代码: <!DOCTYPE html PUBLIC "-//W3C//D ...

  4. Android-配置文件中设置“android:clickable="false"无效的原因及解决办法

    开发中遇到的问题:要实现一个button初始为不可点击,于是在配置文件中设置了android:clickable="false"运行后发现还是可以点击,于是写在了Activity中 ...

  5. UITableViewHeaderFooterView的封装

    UITableViewHeaderFooterView的封装 特点 1. 封装的 UITableViewHeaderFooterView 能够让用户更好的自定义自己的 headerView; 2. 封 ...

  6. Android Json处理框架

    1.Android 中的Json解析工具fastjson .序列化.反序列化 2.Android Gson的使用总结 3.Android-JSONTool 一个简易的Json框架类,小到只有一个类 有 ...

  7. OC 面试问题汇总

    OC 问题汇总: 1. 你如何理解 iOS 内存管理   1. new alloc copy retain这些对象我们都要主动的release或者 autorelease   2. 如果是类方法创建的 ...

  8. 忘记Mysql的root密码怎么办?

    有时候忘掉了mysql的root密码,这种情况下,如何重置root的密码呢? 找到并编辑mysql的my.ini配置文件,在mysqld节点中添加上skip-grant-table. 如下: [mys ...

  9. ORACLE的SPFILE与PFILE

    ORACLE中的参数文件是一个包含一系列参数以及参数对应值的操作系统文件,可以分为两种类型.它们是在数据库实例启动时候加载的,决定了数据库的物理结构.内存.数据库的限制及系统大量的默认值.数据库的各种 ...

  10. winform(三)——更换主窗体例子

    做一个登录窗口,登录成功时关闭form1,展示from2界面 1.主界面Login namespace WindowsFormsApplication1 { public partial class ...