题意:

      有一群老牛,给你一些关系,a b表示牛a仰慕牛b,最后问你有多少个牛是被所有牛仰慕的。

思路:

      假如这些仰慕关系不会出现环,那么当且仅当只有一只牛的出度为0的时候答案才是1,都则就是0,再假设所有的关系正好组成了一个环,那么就是说明每只牛都没其他所有牛仰慕,那么答案就是n,所以我们可以像强联通缩点之后看是否有且仅有一个出度为0的,如果有那么答案就是那个强联通分量的元素个数,否则就是0,因为同一个强联通里面的点有着相同的性质.


#include<stdio.h>
#include<string.h>
#include<stack> #define N_node 10000 + 100
#define N_edge 50000 + 500 using namespace std; typedef struct
{
int to ,next;
}STAR; typedef struct
{
int a ,b;
}EDGE; STAR E1[N_edge] ,E2[N_edge];
EDGE edge[N_edge];
int list1[N_node] ,list2[N_node] ,tot;
int Belong[N_node] ,cont;
int out[N_node] ,sum[N_node];
int mark[N_node];
stack<int>st; void add(int a ,int b)
{
E1[++tot].to = b;
E1[tot].next = list1[a];
list1[a] = tot;
E2[tot].to = a;
E2[tot].next = list2[b];
list2[b] = tot;
} void DFS1(int s)
{
mark[s] = 1;
for(int k = list1[s] ;k ;k = E1[k].next)
{
int to = E1[k].to;
if(!mark[to])DFS1(to);
}
st.push(s);
} void DFS2(int s)
{
Belong[s] = cont;
sum[cont] ++;
mark[s] = 1;
for(int k = list2[s] ;k ;k = E2[k].next)
{
int to = E2[k].to;
if(!mark[to]) DFS2(to);
}
} int main ()
{
int n ,m ,a ,b ,i;
while(~scanf("%d %d" ,&n ,&m))
{
memset(list1 ,0 ,sizeof(list1));
memset(list2 ,0 ,sizeof(list2));
tot = 1;
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d" ,&a ,&b);
add(a ,b);
edge[i].a = a;
edge[i].b = b;
}
while(!st.empty())
st.pop();
memset(mark ,0 ,sizeof(mark));
for(i = 1 ;i <= n ;i ++)
if(!mark[i])DFS1(i);
cont = 0;
memset(mark ,0 ,sizeof(mark));
memset(sum ,0 ,sizeof(sum));
while(!st.empty())
{
int to = st.top();
st.pop();
if(!mark[to])
{
cont ++;
DFS2(to);
}
}
memset(out ,0 ,sizeof(out));
for(i = 1 ;i <= m ;i ++)
{
a = Belong[edge[i].a];
b = Belong[edge[i].b];
if(a == b) continue;
out[a] ++;
}
int ss = 0 ,mk = -1;
for(i = 1 ;i <= cont ;i ++)
{
if(!out[i])
{
ss ++;
mk = i;
}
}
if(ss == 1) printf("%d\n" ,sum[mk]);
else printf("0\n");
}
return 0;
}

POJ2186 强联通的更多相关文章

  1. poj2186强联通(牛仰慕)

    题意:       有一群老牛,他们之间有m组敬仰关系,关系可以传递,a仰慕b,b仰慕c,那么a就仰慕c,现在问被所有老牛都仰慕 的有多少? 思路:       想想,是不是一个环中的老牛的关系都是一 ...

  2. Kosaraju算法---强联通分量

    1.基础知识 所需结构:原图.反向图(若在原图中存在vi到vj有向边,在反向图中就变为vj到vi的有向边).标记数组(标记是否遍历过).一个栈(或记录顶点离开时间的数组).      算法描叙: :对 ...

  3. [CF #236 (Div. 2) E] Strictly Positive Matrix(强联通分量)

    题目:http://codeforces.com/contest/402/problem/E 题意:给你一个矩阵a,判断是否存在k,使得a^k这个矩阵全部元素都大于0 分析:把矩阵当作01矩阵,超过1 ...

  4. 强联通 poj 2762

    t个样例    (注意清零) n个点m条边 有向; 任意2点是否能从a->b或者b->a; Yes  No #include<stdio.h> #include<algo ...

  5. UVa 11324 & 强联通分量+DP

    题意: 一张无向图,求点集使其中任意两点可到达. SOL: 强联通分量中的点要么不选要么全都选,然后缩点DAG+DP 记录一下思路,不想写了...代码满天飞.

  6. BZOJ 1051 & 强联通分量

    题意: 怎么说呢...这种题目有点概括不来....还是到原题面上看好了... SOL: 求出强联通分量然后根据分量重构图,如果只有一个点没有出边那么就输出这个点中点的数目. 对就是这样. 哦还有论边双 ...

  7. 洛谷 P2661 信息传递 Label:并查集||强联通分量

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  8. POJ 1236-Network of Schools (图论-有向图强联通tarjan)

    题目链接:http://poj.org/problem?id=1236 题目大意:N(2<N<100)个学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输.问题 ...

  9. POJ 2186-Popular Cows (图论-强联通分量Korasaju算法)

    题目链接:http://poj.org/problem?id=2186 题目大意:有n头牛和m对关系, 每一对关系有两个数(a, b)代表a牛认为b牛是“受欢迎”的,且这种关系具有传递性, 如果a牛认 ...

随机推荐

  1. 185. 部门工资前三高的所有员工 + 多表联合 + join + dense_rank()

    185. 部门工资前三高的所有员工 LeetCode_MySql_185 题目描述 方法一:使用join on # Write your MySQL query statement below sel ...

  2. golang操作mysql2

    目录 Go操作MySQL 连接 下载依赖 使用MySQL驱动 初始化连接 SetMaxOpenConns SetMaxIdleConns CRUD 建库建表 查询 单行查询 多行查询 插入数据 更新数 ...

  3. python3中post和get请求处理

    post 请求处理 def url(): url = "www.xxx.com.cn" data = { "csrfmiddlewaretoken":" ...

  4. [virtualenv][python] 环境管理——对 virtualenv 更轻便的封装

    virtualenv_simple_wrapper 如有错误,欢迎指出 Char-z 项目地址 gitee: virtualenv_simple_wrapper 使用说明 下载文件 virtualen ...

  5. 任务3 PHP配置 1. PHP基础配置

    查看PHP配置文件得位置 #/ucsr/local/php/bin/php -i |grep -i "loaded configuration file" # cp /usr/lo ...

  6. Python中异步协程的使用方法介绍

    1. 前言 在执行一些 IO 密集型任务的时候,程序常常会因为等待 IO 而阻塞.比如在网络爬虫中,如果我们使用 requests 库来进行请求的话,如果网站响应速度过慢,程序一直在等待网站响应,最后 ...

  7. BeautifulSoup爬取微博热搜榜

    获取url 设定请求头 requests发出get请求 实例化BeautifulSoup对象 BeautifulSoup提取数据 import requests 2 from bs4 import B ...

  8. Java中HashMap的源码分析

    先来回顾一下Map类中常用实现类的区别: HashMap:底层实现是哈希表+链表,在JDK8中,当链表长度大于8时转换为红黑树,线程不安全,效率高,允许key或value为null HashTable ...

  9. Forms身份验证 知识总结

    最简单的Forms验证实现方法:FormsAuthentication.SetAuthCookie()方法,传递一个登录名即可FormsAuthentication.SignOut()方法退出Form ...

  10. Git本地操作2

    code[class*="language-"], pre[class*="language-"] { color: rgba(51, 51, 51, 1); ...