Redis 节点分别维护自己负责的槽和对应的数据。伸缩原理:Redis 槽和对应数据在不同节点之间移动

环境:CentOS7 搭建 Redis 集群

一、集群扩容

1. 手动扩容

(1) 准备节点 9007,并加入集群

192.168.11.40:9001> cluster meet 192.168.11.40 9007

【注意】若 cluster meet 加入已存在于其它集群的节点,会导致集群合并,造成数据错乱!。建议使用 redis-cli 的 add-node:

# 若节点已加入其它集群或包含数据,会报错
add-node new_host:new_port existing_host:existing_port
--cluster-slave # 直接添加为从节点
--cluster-master-id <arg> # 从节点对应的主节点id

(2) 迁移槽和数据

  • 槽在迁移过程中集群可以正常提供读写服务
  • 首先确定原有节点的哪些槽需要迁移到新节点。确保每个节点负责相似数量的槽,保证各节点的数据均匀
  • 槽是 Redis 集群管理数据的基本单位。数据迁移是逐槽进行

槽迁移流程:

  • 目标节点准备导入槽的数据:目标节点执行cluster setslot {slot} importing {sourceNodeId}
  • 源节点准备迁出槽的数据:源节点执行cluster setslot {slot} migrating {targetNodeId}
  • 获取 count 个属于槽 slot 的键:源节点执行cluster getkeysinslot {slot} {count}
  • 迁移键:源节点执行migrate {targetIp} {targetPort} "" 0 {timeout} keys {keys...},把键通过流水线(pipeline)机制批量迁移到目标节点。Redis3.0.6 后才支持批量迁移
  • 重复上两步,直到槽下所有的键值数据迁移到目标节点
  • 向集群所有主节点通知槽被分配给目标节点:集群内所有主节点执行cluster setslot {slot} node {targetNodeId}

内部伪代码:

def move_slot(source,target,slot):
# 目标节点准备导入槽
target.cluster("setslot",slot,"importing",source.nodeId);
# 目标节点准备全出槽
source.cluster("setslot",slot,"migrating",target.nodeId);
while true :
# 批量从源节点获取键
keys = source.cluster("getkeysinslot",slot,pipeline_size);
if keys.length == 0:
# 键列表为空时,退出循环
break;
# 批量迁移键到目标节点
source.call("migrate",target.host,target.port,"",0,timeout,"keys",keys);
# 向集群所有主节点通知槽被分配给目标节点
for node in nodes:
if node.flag == "slave":
continue;
node.cluster("setslot",slot,"node",target.nodeId);

(3) 将 9001 的槽 4096 迁移到 9007 中

准备数据

192.168.11.40:9001> set key:test:5028 value:5028
192.168.11.40:9001> set key:test:68253 value:68253

目标节点准备工作

192.168.11.40:9007> cluster nodes
8ccdb0963411ebd05ce21952bdd4b7597825afdc 192.168.11.40:9001@19001 master - 0 1620928869000 2 connected 0-5461
bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d 192.168.11.40:9007@19007 myself,master - 0 1620928868000 0 connected
...
# 9007 准备导入槽 4096 的数据
192.168.11.40:9007> cluster setslot 4096 importing 8ccdb0963411ebd05ce21952bdd4b7597825afdc
OK
# 槽 4096 已开启导入状态
192.168.11.40:9007> cluster nodes
bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d 192.168.11.40:9007@19007 myself,master - 0 1620928959000 0 connected [4096-<-8ccdb0963411ebd05ce21952bdd4b7597825afdc]
...

源节点准备工作

# 9001 准备导出槽 4096 数据
192.168.11.40:9001> cluster setslot 4096 migrating bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d
OK
# 槽 4096 已开启导出状态
192.168.11.40:9001> cluster nodes
8ccdb0963411ebd05ce21952bdd4b7597825afdc 192.168.11.40:9001@19001 myself,master - 0 1620929179000 2 connected 0-5461 [4096->-bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d]
...

导出数据

# 获取 100 个属于槽 4096 的键
192.168.11.40:9001> cluster getkeysinslot 4096 100
1) "key:test:5028"
2) "key:test:68253"
# 查看数据
192.168.11.40:9001> mget key:test:5028 key:test:68253
1) "value:5028"
2) "value:68253"
# 迁移这2个键:migrate 命令保证了每个键迁移过程的原子性
192.168.11.40:9001> migrate 192.168.11.40 9007 "" 0 5000 keys key:test:5028 key:test:68253
OK
# 再次查询会报 ASK 错误:引导客户端找到数据所在的节点
192.168.11.40:9001> mget key:test:5028 key:test:68253
(error) ASK 4096 192.168.11.40:9007

通知所有主节点:槽 4096 指派给 9007

192.168.11.40:9001> cluster setslot 4096 node bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d
192.168.11.40:9002> cluster setslot 4096 node bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d
192.168.11.40:9003> cluster setslot 4096 node bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d
192.168.11.40:9007> cluster setslot 4096 node bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d

查看最终结果

192.168.11.40:9007> cluster nodes
8ccdb0963411ebd05ce21952bdd4b7597825afdc 192.168.11.40:9001@19001 master - 0 1620931743303 7 connected 0-4095 4097-5461
bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d 192.168.11.40:9007@19007 myself,master - 0 1620931741000 8 connected 4096
...

2. 使用 redis-cli 扩容

redis-cli 提供了槽重分片功能

reshard 命令参数详解:

reshard    host:port  # 集群内任意节点地址
--cluster-from <arg> # 源节点id,逗号分隔
--cluster-to <arg> # 目标节点id,只有一个
--cluster-slots <arg> # 迁移多少个槽
--cluster-yes # 确认执行reshard
--cluster-timeout <arg> # 每次 migrate 操作的超时时间,默认 60000ms
--cluster-pipeline <arg> # 每次批量迁移键的数量,默认 10
--cluster-replace

将 9001、9002、9003 的槽迁移到 9007,共迁移 4096 个

$ /usr/local/redis/bin/redis-cli --cluster reshard 192.168.11.40:9001
M: 8ccdb0963411ebd05ce21952bdd4b7597825afdc 192.168.11.40:9001
slots:[0-4095],[4097-5461] (5461 slots) master
1 additional replica(s)
M: bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d 192.168.11.40:9007
slots:[4096] (1 slots) master
...
[OK] All 16384 slots covered.
How many slots do you want to move (from 1 to 16384)? 4096
What is the receiving node ID? bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node #1: 8ccdb0963411ebd05ce21952bdd4b7597825afdc
Source node #2: 5786e3237c7fa413ed22465d15be721f95e72cfa
Source node #3: 85ceb9826e8aa003169c46fb4ba115c72002d4f9
Source node #4: done
Moving slot 0 from 8ccdb0963411ebd05ce21952bdd4b7597825afdc
...
Moving slot 12287 from 85ceb9826e8aa003169c46fb4ba115c72002d4f9
Do you want to proceed with the proposed reshard plan (yes/no)? yes
Moving slot 0 from 192.168.11.40:9001 to 192.168.11.40:9007:
...
Moving slot 12287 from 192.168.11.40:9003 to 192.168.11.40:9007:

查看最终结果

192.168.11.40:9007> cluster nodes
8ccdb0963411ebd05ce21952bdd4b7597825afdc 192.168.11.40:9001@19001 master - 0 1620933907753 7 connected 1366-4095 4097-5461
5786e3237c7fa413ed22465d15be721f95e72cfa 192.168.11.40:9002@19002 master - 0 1620933906733 1 connected 6827-10922
85ceb9826e8aa003169c46fb4ba115c72002d4f9 192.168.11.40:9003@19003 master - 0 1620933905000 3 connected 12288-16383
bb1bb0f5f9e0ee67846ba8ec94a38da700e2e80d 192.168.11.40:9007@19007 myself,master - 0 1620933900000 8 connected 0-1365 4096 5462-6826 10923-12287
...

检查节点之间槽的均衡性

$ /usr/local/redis/bin/redis-cli --cluster rebalance 192.168.11.40:9001
...
[OK] All 16384 slots covered.
*** No rebalancing needed! All nodes are within the 2.00% threshold.

迁移之后所有主节点负责的槽数量差异在 2% 以内,因此集群节点数据相对均匀,无需调整

二、集群收缩

1. 迁移槽

执行 reshard 三次,将数据平均分布到其他三个节点

2. 忘记节点

60s 内对所有节点执行如下操作:(不建议)

# 执行后,会将该节点加入禁用列表(持续 60s),不再向其发送 Gossip 消息
cluster forget {nodeId}

建议使用 redis-cli 的 del-node 忘记节点:

/usr/local/redis/bin/redis-cli --cluster del-node {host:port} {nodeId}

内部伪代码

def delnode_cluster_cmd(downNode):
# 下线节点不允许包含slots
if downNode.slots.length != 0
exit 1
end
# 向集群内节点发送cluster forget
for n in nodes:
if n.id == downNode.id:
# 不能对自己做forget操作
continue;
# 如果下线节点有从节点则把从节点指向其他主节点
if n.replicate && n.replicate.nodeId == downNode.id :
# 指向拥有最少从节点的主节点
master = get_master_with_least_replicas();
n.cluster("replicate",master.nodeId);
#发送忘记节点命令
n.cluster('forget',downNode.id)
# 节点关闭
downNode.shutdown();

若主从节点都要下线,先下线从,避免全量复制

Redis 集群伸缩原理的更多相关文章

  1. Redis集群的原理和搭建(转载)

    转载来源:https://www.jianshu.com/p/c869feb5581d Redis集群的原理和搭建 前言 Redis 是我们目前大规模使用的缓存中间件,由于它强大高效而又便捷的功能,得 ...

  2. redis集群伸缩【转】

    一:实验介绍 在不影响集群对外服务的情况下,可以为集群添加节点进行扩容,也可以下线部分节点进行缩容. 原理可以抽象为槽和对应数据在不同节点之间灵活移动. 如果希望加入一个节点来实现集群扩容时,需要通过 ...

  3. 三张图秒懂Redis集群设计原理

    转载Redis Cluster原理 转载https://blog.csdn.net/yejingtao703/article/details/78484151 redis集群部署方式: 单机 主从 r ...

  4. Redis集群设计原理

    ---恢复内容开始--- Redis集群设计包括2部分:哈希Slot和节点主从,本篇博文通过3张图来搞明白Redis的集群设计. 节点主从: 主从设计不算什么新鲜玩意,在数据库中我们也经常用主从来做读 ...

  5. 【集群】Redis集群设计原理

    Redis集群设计包括2部分:哈希Slot和节点主从 节点主从: 主从设计不算什么新鲜玩意,在数据库中我们也经常用主从来做读写分离,直接上图: 图上能看得到的信息: 1, 只有1个Master,可以有 ...

  6. Redis学习总结(六)--Redis集群伸缩

    我们在上一章讲了如何创建集群,今天我们来实现下集群的伸缩. 添加节点 操作流程 1.启动节点 2.将节点加入到集群中 3.将数据槽从原来的节点迁移部分到新节点上 实践 1)准备两个新节点并启动 [ro ...

  7. Redis集群伸缩

    集群扩容 前提准备,目前集群中一共有6台机器,端口号分别是6381.6382.6383.6384.6385.6386 1) 准备新节点 准备两个新节点,端口号为6387和6388,配置和以前集群配置一 ...

  8. 分布式缓存技术redis学习系列(四)——redis高级应用(集群搭建、集群分区原理、集群操作)

    本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用( ...

  9. 分布式缓存技术redis学习(四)——redis高级应用(集群搭建、集群分区原理、集群操作)

    本文是redis学习系列的第四篇,前面我们学习了redis的数据结构和一些高级特性,点击下面链接可回看 <详细讲解redis数据结构(内存模型)以及常用命令> <redis高级应用( ...

随机推荐

  1. Linux内核模块驱动加载与dmesg调试

    因为近期用到了Linux内核的相关知识,下面随笔将给出内核模块的编写记录,供大家参考. 1.运行环境 Ubuntu 版本:20.04 Linux内核版本:5.4.0-42-generic gcc版本: ...

  2. CMU15-455 Lab2 - task4 Concurrency Index -并发B+树索引算法的实现

    最近在做 CMU-15-445 Database System,lab2 是需要完成一个支持并发操作的B+树,最后一部分的 Task4 是完成并发的索引这里对这部分加锁的思路和完成做一个总结,关于 B ...

  3. Python 随笔2-0319

    一 数据类型 1.整型-int 类型  存年龄.工资.成绩等这样的数据类型可以用int类型 2.浮点型-小数类型(float),带小数点的 3.布尔类型-非真即假  只有这二种:True和Flase, ...

  4. Python基础之:Python中的类

    目录 简介 作用域和命名空间 class 类对象 类的实例 实例对象的属性 方法对象 类变量和实例变量 继承 私有变量 迭代器 生成器 简介 class是面向对象编程的一个非常重要的概念,python ...

  5. CMU数据库(15-445) Lab4-CONCURRENCY CONTROL

    Lab4- CONCURRENCY CONTROL 拖了很久终于开始做实验4了.lab4有三个大任务1. Lock Manager.2. DEADLOCK DETECTION .3. CONCURRE ...

  6. Dynamics Crm Plugin插件注册的问题及解决方案(持续更新。。。。。。)

    1.注册插件的时候回遇到如下提示 Plug-in assembly does not contain the required types or assembly content cannot be ...

  7. 记docker安装和ida远程调试问题

    docker安装 1.卸载可能存在的旧版本: sudo apt-get remove docker docker-engine docker-ce docker.io   如果想要彻底卸载docker ...

  8. Object.assign()和解构赋值:给对象赋值的两种方法

    一.Object.assign()方法给对象赋值 Object.assign() 方法用于将所有可枚举属性的值从一个或多个源对象分配到目标对象.它将返回目标对象. 拷贝的是属性值 如果目标对象中的属性 ...

  9. JDBC_10_使用Statement实现升序和降序

    使用Statement数据库操作对象实现升序和降序 Statement可以使用在需要SQL语句拼接的情况下,因为在这样的情况下如果使用PreparedStatement就会给需要拼接的某个SQL关键字 ...

  10. Git 简介与仓库使用

    1. Git 简介 2. 远程仓库的使用 3. 本地仓库的使用 1. Git 简介 Git 是分布式版本控制系统,同一个 Git 仓库,可以分布到不同的机器上. 其原理是首先找一台电脑充当服务器的角色 ...