核心问题:如果每个用户只有一类数据,如何进行联邦学习?

Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar. "Federated Learning with Only Positive Labels." (2020).

简述

在联邦学习中,如果每个用户节点上只有一类数据,那么在本地训练时会将任何数据映射到对应标签,此时使用分布式SGD或FedAvg算法学习分类器会导致整体学习失效。为了安全性,不能进行用户间数据交换,甚至不能相互交换模型参数(否则很容易推断出对方的数据类型)。这篇文章的想法是,将输入和标签通过嵌入(embedding)放入同一个高维空间,在用户端使输入和标签距离尽量近,在服务器端使标签的相互距离尽量远。仿真看来效果与集中数据后使用Softmax训练相差无几。

模型设置

这篇文章是收到了contrastive loss的启发

\(\ell_{\mathrm{cl}}(f(\boldsymbol{x}), y)=\underbrace{\alpha \cdot\left(\boldsymbol{d}\left(g_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{w}_{y}\right)\right)^{2}}_{\ell_{\mathrm{cl}}^{\mathrm{pos}}(f(\boldsymbol{x}), y)}+\underbrace{\beta \cdot \sum_{c \neq y}\left(\max \left\{0, \nu-\boldsymbol{d}\left(g_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{w}_{c}\right)\right\}\right)^{2}}_{\ell_{\mathrm{cl}}^{\mathrm{neg}}(f(\boldsymbol{x}), y)},\)

也就是将loss分为两个部分,分别表示在嵌入空间中,与标签的距离尽量近,与非标签的距离尽量远。由于联邦学习中接触不到非标签的位置,所以改在服务器端用标签间的距离代替这一操作。

其中两个损失函数为\(\hat{\mathcal{R}}_{\operatorname{pos}}\left(\mathcal{S}^{i}\right) =\alpha \cdot\left(\boldsymbol{d}\left(g_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{w}_{y}\right)\right)^{2}\)和\(\operatorname{reg}_{\mathrm{sp}}(W)=\sum_{c \in[C]} \sum_{c^{\prime} \neq c}\left(\max \left\{0, \nu-\boldsymbol{d}\left(\boldsymbol{w}_{c}, \boldsymbol{w}_{c^{\prime}}\right)\right\}\right)^{2}\)

。为了节省在大量标签中的遍历开销,在计算标签距离时只考虑拉开最近的若干个标签,因此损失函数修正为\(\operatorname{reg}_{\mathrm{sp}}^{\mathrm{top}}(W)=\sum_{c \in \mathcal{C}^{t}} \sum_{y \in \mathrm{e}^{\prime} \atop y \neq c}-\boldsymbol{d}^{2}\left(\boldsymbol{w}_{c}, \boldsymbol{w}_{y}\right) \cdot [ y \in \mathcal{N}_{k}(c) ]\)。在仿真中也体现了如果没有用这个技巧,准确率甚至还会降低3%到5%。

理论保证

这篇文章的理论分析是比较有意思的,说明文章所提的训练方式Federated Averaging with Spreadout (FedAwS)与数据集中时的效果相当。证明思路参考了该团队的前作[1]。【这部分挖坑待补充】

[1] Reddi, Sashank J., Kale, Satyen, Yu, Felix X., Holtmann-Rice, Daniel Niels, Chen, Jiecao and Kumar, Sanjiv. "Stochastic Negative Mining for Learning with Large Output Spaces.." Paper presented at the meeting of the AISTATS, 2019.

仿真结果

文章用ResNets对CIFAR-10和CIFAR-100数据集、自主构建的三层MLP在有4K个标签的AmazonCat等数据集上进行了验证,在90%准确下下最多的标签数达到了13K。均远远超过直接的FedAvg算法,和集中数据的学习效果相当。

评价

新意10×有效性100×问题大小1 = 1000

  1. 我之前想这个问题的时候,只局限在了Softmax激活函数上,导致思考的最终输出只是一维的
  2. 添加正则项来修改loss是不亚于修改网络结构的创新方法
  3. embedding等来源于NLP中的内容现在很火

【流行前沿】联邦学习 Federated Learning with Only Positive Labels的更多相关文章

  1. 联邦学习 Federated Learning 相关资料整理

    本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...

  2. 【一周聚焦】 联邦学习 arxiv 2.16-3.10

    这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟 ...

  3. 【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits

    Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in ...

  4. 联邦学习(Federated Learning)

    联邦学习简介        联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...

  5. Federal Learning(联邦学习)认知

    本人是学生党,同时也是小菜鸡一枚,撞运气有机会能够给老师当项目助理,在这个过程中肯定会学到一些有趣的知识,就在此平台上记录一下,在知识点方面有不对的还请各位指正. What(什么是联邦学习?) 联邦学 ...

  6. 【论文考古】联邦学习开山之作 Communication-Efficient Learning of Deep Networks from Decentralized Data

    B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learni ...

  7. Federated Learning: Challenges, Methods, and Future Directions

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1908.07873v1 [cs.LG] 21 Aug 2019 Abstract 联邦学习包括通过远程设备或孤立的数据中心( ...

  8. Reliable Federated Learning for Mobile Networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 以下是对本文关键部分的摘抄翻译,详情请参见原文. arXiv: 1910.06837v1 [cs.CR] 14 Oct 2019 Abst ...

  9. 【论文笔记】A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond(综述)

    A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Bey ...

随机推荐

  1. Ubuntu 18.04 server安装+搭建Seacms v10.1网站

    0x00 写在前面 以前我天真的认为,ubuntu Desktop会安装了,server就无所谓了,其实完全不然,server还是有一些坑点的. 之所以选择Seacms搭建网站,是因为这个SeaCMS ...

  2. JUC之线程池基础与简单源码分析

    线程池 定义和方法 线程池的工作时控制运行的线程数量,处理过程中将任务放入队列,然后在线程创建后启动这些任务,如果线程数量超过了最大数量,超出数量的线程排队等候,等待其他线程执行完成,再从队列中取出任 ...

  3. 如何通俗地理解docker

    Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制,相互之间不会有任何 ...

  4. Error building SqlSession. ### The error may exist in dao/UserMapper.xml ### Cause: org.apache.ibatis.builder.BuilderException: Error parsing SQL Mapper Configuration(2 字节的 UTF-8 序列的字节 2 无效。)

    关于在学习Mybatis框架时运行报错 Caused by: org.apache.ibatis.exceptions.PersistenceException: ### Error building ...

  5. nginx模块lnmp架构

    目录 一:关于lnmp架构 二:目录索引模块 1.目录索引模块内容 1.开启目录索引(创建模块文件) 2.测试 3.重启nginx 4.配置域名解析DNS 5.网址测试 二:目录索引(格式化文件大小) ...

  6. 使用du与df命令查看磁盘容量不一致

    在Linux系统的ECS实例中,执行du与df命令查看磁盘容量,出现不一致的现象 执行df -h命令查看文件系统的使用率,可以看到500G 执行du / -sh 命令只使用250G 执行du和df命令 ...

  7. MySQL读写问题(锁)

    一.概述 读-读:并发不存在问题,不需要加锁 写-写:并发存在问题,可能会造成脏写(一个事务没有写完,另一个事务也对相同的数据进行写),但是这种情况,任何一种隔离级别都不允许发生,在隔离级别的时候就解 ...

  8. 「JOI 2014 Final」裁剪线

    做法一 首先将边界也视作四条裁剪线,整个平面作为一张纸,视存在 \(y = -\infty, y = +\infty, x = -\infty, x = +\infty\) 四条直线. 按照纵坐标依次 ...

  9. Linux 查看运行中进程的 umask

    线上某台虚机因为故障重装了系统(基线 CentOS 6.9 内核 2.6.x),重新部署了应用.这个应用会生成一个文件,到NFS挂载目录. 而这个 NFS 挂载目录是一个 FTP 服务器的目录.另一台 ...

  10. java中使用反射获取pojo(实体)类的所有字段值

    出处:https://developer.aliyun.com/article/239346 说起反射,不得不说它实在是太强大了,通过反射就可以轻轻松松拿到各种东东,如果你想在项目中解除对某个类的依赖 ...