\(\mathcal{Description}\)

  Link.

  有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同。还有 \(m\) 个盒子,每个盒子可以被放入某些颜色的小球,且第 \(i\) 个盒子要求放入总数不少于 \(b_i\)。你要拿走尽量少的球,使得要求无法被满足,并求出此时拿球方案数模 \(998244353\) 的值。

  \(n\le20\),\(m\le10^4\)。

\(\mathcal{Solution}\)

  如果保持清醒地做这道题还是比较简单的。

  首先用 Hall 定理转化合法条件,记 \(A=\{a_n\}\),\(B=\{b_m\}\),\(\operatorname{adj}(S\subseteq B)\) 表示 \(S\) 内的 \(b\) 所邻接的 \(a\) 的并,则合法条件为

\[\forall S\subseteq B,~\sum_{b\in S}b\le\sum_{a\in\operatorname{adj}(S)}a
\]

那么可以得知非法条件。固定 \(\operatorname{adj}(S)\),显然 \(b\) 能多选就多选,最终能得到最小取球数量为

\[c=\max\left\{0,\min_{\operatorname{adj}(S)}\left\{\sum_{a\in\operatorname{adj}(S)}a-\sum_{\operatorname{adj}(\{b\})\subseteq\operatorname{adj}(S)}b+1\right\}\right\}.
\]

  令集族 \(\mathcal S=\arg \min_{\operatorname{adj}(S)}\left\{\sum_{a\in\operatorname{adj}(S)}a-\sum_{\operatorname{adj}(\{b\})\subseteq\operatorname{adj}(S)}b+1\right\}\),也能避免算重地求出方案数为:

\[\sum_{T\subseteq A}[\exist S\in \mathcal S,~T\subseteq S]f(T,c).
\]

其中 \(f(T,c)\) 表示在集合 \(T\) 内的 \(a\) 中一共选走 \(c\) 个,且每个 \(a\) 至少被选走一个的方案数,可以容斥计算。具体实现上,用几次 FWT 即可。复杂度 \(\mathcal O(nm+2^nn)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) inline void chkmin( int& a, const int b ) { b < a && ( a = b ); } const int MAXN = 20, MAXM = 1e4, MAXV = 2e6, MOD = 998244353;
int n, m, a[MAXN + 5], b[MAXM + 5], adj[MAXM + 5], sum[1 << MAXN];
int fac[MAXV + 5], ifac[MAXV + 5], tot[1 << MAXN];
int cvr[1 << MAXN], chs[1 << MAXN]; inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
} inline void init( const int s ) {
fac[0] = 1;
rep ( i, 1, s ) fac[i] = mul( i, fac[i - 1] );
ifac[s] = mpow( fac[s], MOD - 2 );
per ( i, s - 1, 0 ) ifac[i] = mul( ifac[i + 1], i + 1 );
} inline int comb( const int a, const int b ) {
return a < b ? 0 : mul( fac[a], mul( ifac[b], ifac[a - b] ) );
} inline void fwtAND( const int len, int* u, const auto& adf ) {
for ( int stp = 1; stp < len; stp <<= 1 ) {
for ( int i = 0; i < len; i += stp << 1 ) {
rep ( j, i, i + stp - 1 ) {
adf( u[j], u[j + stp] );
}
}
}
} inline void fwtOR( const int len, int* u, const auto& adf ) {
for ( int stp = 1; stp < len; stp <<= 1 ) {
for ( int i = 0; i < len; i += stp << 1 ) {
rep ( j, i, i + stp - 1 ) {
adf( u[j + stp], u[j] );
}
}
}
} int main() {
scanf( "%d %d", &n, &m );
rep ( i, 0, n - 1 ) scanf( "%d", &a[i] );
rep ( i, 0, m - 1 ) scanf( "%d", &b[i] );
rep ( i, 0, n - 1 ) {
rep ( j, 0, m - 1 ) {
int t; scanf( "%d", &t );
adj[j] |= t << i;
}
}
rep ( i, 0, m - 1 ) sum[adj[i]] += b[i];
fwtOR( 1 << n, sum, []( int& u, const int v ) { u += v; } ); int tak = 1e9;
rep ( S, 1, ( 1 << n ) - 1 ) {
rep ( i, 0, n - 1 ) if ( S >> i & 1 ) tot[S] += a[i];
if ( sum[S] ) chkmin( tak, tot[S] + 1 - sum[S] );
}
if ( tak <= 0 ) return puts( "0 1" ), 0;
printf( "%d ", tak ); int way = 0; init( tot[( 1 << n ) - 1] );
rep ( S, 1, ( 1 << n ) - 1 ) {
cvr[S] = tot[S] + 1 - sum[S] == tak;
chs[S] = comb( tot[S], tak );
if ( __builtin_popcount( S ) & 1 ) chs[S] = sub( 0, chs[S] );
}
fwtAND( 1 << n, cvr, []( int& u, const int v ) { u += v; } );
fwtOR( 1 << n, chs, addeq );
rep ( S, 1, ( 1 << n ) - 1 ) if ( cvr[S] ) {
( __builtin_popcount( S ) & 1 ? subeq : addeq )( way, chs[S] );
}
printf( "%d\n", way );
return 0;
}

\(\mathcal{Details}\)

  某个问题无法找到解决方法时,尤其是在速度相关的比赛时,一定要冷静下来,形式地描述“我想要求什么东西”,而不是对着代码修修补补。

Solution -「ABC 215H」Cabbage Master的更多相关文章

  1. Solution -「ABC 219H」Candles

    \(\mathcal{Description}\)   Link.   有 \(n\) 支蜡烛,第 \(i\) 支的坐标为 \(x_i\),初始长度为 \(a_i\),每单位时间燃烧变短 \(1\) ...

  2. Solution -「ABC 213G」Connectivity 2

    \(\mathcal{Description}\)   Link.   给定简单无向图 \(G=(V,E)\),点的编号从 \(1\) 到 \(|V|=n\).对于 \(k=2..n\),求 \(H= ...

  3. Solution -「ABC 213H」Stroll

    \(\mathcal{Description}\)   Link.   给定一个含 \(n\) 个结点 \(m\) 条边的简单无向图,每条边的边权是一个常数项为 \(0\) 的 \(T\) 次多项式, ...

  4. Solution -「ABC 217」题解

    D - Cutting Woods 记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间. 考场上采用的 FHQ_Treap 无脑莽. #include <cstdio> #i ...

  5. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  6. Solution Set -「ABC 217」

      大家好屑兔子又来啦! [A - Lexicographic Order]   说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead} ...

  7. Solution -「ARC 110E」Shorten ABC

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\),包含 A, B, C 三种字符的字符串 \(S\),定义一次操作为将其中相邻两个不相同的字符替换为字符集 ...

  8. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  9. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

随机推荐

  1. js监听网页页面滑动滚动事件,实现导航栏自动显示或隐藏

    /** * 页面滑动滚动事件 * @param e *///0为隐藏,1为显示var s = 1;function scrollFunc(e) { // e存在就用e不存在就用windon.event ...

  2. zabbix监控图形中文乱码的解决方法

    问题描述: 最近搭建了一套zabbix,当我把语言切换到中文的时候,发现监控的图形界面中一些中文参数乱码,但是图形界面在英文环境下完全没有乱码问题.如下图(中文界面): 解决方法: 解决方法有两种,方 ...

  3. redis持久层设置

    1.默认为RDB存储方式,每次修改数据库,需要输入指令save才会存入磁盘的dump.rdb文件里,相当于备份快照,下次开启服务后会自动缓存于内存里.当然,满足下面几个条件也会自动保存到磁盘:save ...

  4. sqoop的使用之import导入到HDFS

    原文链接: https://www.toutiao.com/i6772128429614563843/ 首先我们已经安装好sqoop了,如果没有安装好参考文档<快速搭建CDH-Hadoop-Hi ...

  5. Word2010制作日历

    原文: https://www.toutiao.com/i6494876164157342222/ 最终效果: 设置页面纸张为"横向". 选择"页面布局"选项卡 ...

  6. 端口状态 LISTENING、ESTABLISHED、TIME_WAIT及CLOSE_WAIT详解,以及三次握手四次挥手,滑动窗口(整理转发)

    网上查了一下端口状态的资料,我下面总结了一下,自己学习学习: TCP状态转移要点 TCP协议规定,对于已经建立的连接,网络双方要进行四次握手才能成功断开连接,如果缺少了其中某个步骤,将会使连接处于假死 ...

  7. ES6随笔D1

    1.数值解构赋值 ES6 允许按照一定模式,可以从数组中提取值,按照对应位置,对变量赋值,这被称为解构. 解构赋值的规则是,只要等号右边的值不是对象或数组,就先将其转为对象.由于undefined和n ...

  8. 听不懂x86,arm?

    之前听别人讲x86或者ARM,我心里有一些疑惑,为什么他们不考虑32位还是64位的? 直到和师傅交流了一下: I:32位机是不是不支持部署k3os? T:这个年头哪里还有32位机? T:现在说x86, ...

  9. 【刷题-PAT】A1111 Online Map (30 分)

    1111 Online Map (30 分) Input our current position and a destination, an online map can recommend sev ...

  10. 解决windows下因为防火墙无法通过go get 下载gin的问题

    使用: go get -u github.com/gin-gonic/gin 出现以下错误: unrecognized import path "gopkg.in/yaml.v2" ...