PTA 7-3 树的遍历 (25分)
PTA 7-3 树的遍历 (25分)
给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列。这里假设键值都是互不相等的正整数。
输入格式:
输入第一行给出一个正整数N(≤30),是二叉树中结点的个数。第二行给出其后序遍历序列。第三行给出其中序遍历序列。数字间以空格分隔。
输出格式:
在一行中输出该树的层序遍历的序列。数字间以1个空格分隔,行首尾不得有多余空格。
输入样例:
7
2 3 1 5 7 6 4
1 2 3 4 5 6 7
输出样例:
4 1 6 3 5 7 2
【程序思路】
在后序遍历的最后一个数字4是根结点,在中序遍历中找到根结点4,4左边的序列1 2 3共3个结点是左子树的中序遍历,4右边的序列5 6 7共3个结点是右子树的中序遍历。在后序遍历中前3个结点2 3 1是左子树的后序遍历,紧接着的3个结点5 7 6是右子树的后序遍历。即变成了两个子树的后序遍历和中序遍历序列以及根结点。
左子树的后序遍历为2 3 1
左子树的中序遍历为1 2 3
右子树的后序遍历为5 7 6
右子树的中序遍历为5 6 7
根结点为4
按同样的步骤可以将左子树也分成左子树、右子树和根这3部分,右子树也可以分成左子树、右子树和根这3部分。
然后递归创建树,最后利用队列层序遍历输出。
【程序实现】
#include <bits/stdc++.h>
using namespace std;
typedef struct Tree{
int data;
struct Tree *left;
struct Tree *right;
}*tree;
int p1[35],p2[35];
struct Tree *creat(int front1, int rear1, int front2, int rear2) {
struct Tree *root = new struct Tree;
root->data = p1[rear1];
root->left = root->right = NULL;
int p = front2;
while(p2[p] != p1[rear1])
p++;
int c = p - front2;//左子树节点的个数
if (p != front2) //创建左子树
root->left = creat(front1 , front1 + c - 1 , front2 , p - 1);
if (p != rear2)//创建右子树
root->right = creat(front1 + c , rear1 - 1 , p + 1 , rear2);
return root;
}
void Visit(struct Tree *root) {
queue<tree> q;
if (root)
q.push(root);
while(!q.empty()) {
root = q.front();
q.pop();
cout<<root->data;
if (root->left)
q.push(root->left);
if (root->right)
q.push(root->right);
if (!q.empty())
cout<<' ';
}
}
int main()
{
int n;
cin>>n;
for(int i = 0; i < n; i++)
cin>>p1[i];
for(int i = 0; i < n; i++)
cin>>p2[i];
struct Tree *root = creat(0, n - 1, 0, n - 1);
Visit(root);
return 0;
}
PTA 7-3 树的遍历 (25分)的更多相关文章
- PTA 03-树1 树的同构 (25分)
题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/711 5-3 树的同构 (25分) 给定两棵树T1和T2.如果T1可以通过若干次左右 ...
- PTA 根据后序和中序遍历输出先序遍历 (25分)
PTA 根据后序和中序遍历输出先序遍历 (25分) 本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果. 输入格式: 第一行给出正整数N(≤30),是树中结点的个数.随后两行 ...
- PTA 树的同构 (25分)
PTA 树的同构 (25分) 输入格式: 输入给出2棵二叉树树的信息.对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号):随后N行,第i行对应编号第 ...
- PTA甲级1094 The Largest Generation (25分)
PTA甲级1094 The Largest Generation (25分) A family hierarchy is usually presented by a pedigree tree wh ...
- PTA 04-树5 Root of AVL Tree (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/668 5-6 Root of AVL Tree (25分) An AVL tree ...
- PTA 10-排序5 PAT Judge (25分)
题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/677 5-15 PAT Judge (25分) The ranklist of PA ...
- PTA 05-树7 堆中的路径 (25分)
题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/713 5-5 堆中的路径 (25分) 将一系列给定数字插入一个初始为空的小顶堆H[] ...
- 2020天梯赛总决赛L2-3 完全二叉树的层序遍历 (25分)
题目:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树.对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全 ...
- PAT 03-树1 树的同构 (25分)
给定两棵树T1和T2.如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是"同构"的.例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A.B.G的左右孩子互换后 ...
随机推荐
- flask_sqlalchemy 查询结果转dict 终极解决方案
之前为了学习Python,试着拿Flask作框架搞小网站,感觉还不错,基本就抛弃了PHP.前段时间做了一个微信小程序,想着yii框架拿来写几十个小接口是不是浪费了,就继续用flask写api了,哪想到 ...
- [科技]Loj#6564-最长公共子序列【bitset】
正题 题目链接:https://loj.ac/p/6564 题目大意 给两个序列\(a,b\)求它们的最长公共子序列. \(1\leq n,m,a_i,b_i\leq 7\times 10^4\) 解 ...
- P7115-[NOIP2020]移球游戏【构造】
正题 题目链接:https://www.luogu.com.cn/problem/P7115 题目大意 \(n+1\)个柱子,前面\(n\)个上面各有\(m\)个球,球有\(n\)种颜色,每种\(m\ ...
- 简易集成websocket技术实现消息推送
Websocket 简介 首先介绍下WebSocket,它是一种网络通信技术,该技术最大的特点就是,服务器端可以主动往客户端发送消息:当然,客户端也可以主动往服务器发送消息,实现两端的消息通信,属于网 ...
- 基于PaddleOCR实现AI发票识别的Asp.net Core应用
简要介绍 用户批量上传需要识别的照片,上传成功后,系统会启动Hangfire后台Job开始调用PaddleOCR服务返回结果,这个过程有点类似微服务的架构模型. PaddleOCR PaddleOCR ...
- C++核心编程 2 引用
引用的基本使用 作用:给变量起别名 ,语法:数据类型 & 别名 = 原名 注意:引用必须初始化,且初始化之后,就不可更改. 引用做函数参数 作用:函数传参时,可以利用引用的技术让形参修饰实参 ...
- 【转】C语言 printf格式控制符 完全解析
printf的格式控制的完整格式:% - 0 m.n l或h 格式字符下面对组成格式说明的各项加以说明:①%:表示格式说明的起始符号,不可缺少.②-:有-表示左 ...
- 036—环境变量path
day04 课堂笔记 1.开发第一个java程序:HelloWorld 1.1.程序写完以后,一定要ctrl+s进行保存 源代码若修改,需重新进行编译 1.2.编译阶段 怎么编译?使用什么命令?这个命 ...
- Java中的函数式编程(三)lambda表达式
写在前面 lambda表达式是一个匿名函数.在Java 8中,它和函数式接口一起,共同构建了函数式编程的框架. lambda表达式乍看像是匿名内部类的一种语法糖,但实际上,它们是两种本质不同的事物 ...
- 兜底机制——leader到底做了什么?
Case 在之前一次年底考评的时候,有一位leader将一个案例同时用到了自己和下属身上,老板发出了责问: 这个项目到底你是负责人,还是你下面的同学是负责人,如果下面的同学是负责人,为什么要算到你的头 ...