洛谷1429 平面最近点对(KDTree)
qwq(明明可以直接分治过掉的)
但是还是当作联系了
首先,对于这种点的题,很显然的套路,我们要维护一个子树\(mx[i],mn[i]\)分别表示每个维度的最大值和最小值
(这里有一个要注意的东西!就是我们\(up\)的时候,要判断一下当前是否还有左/右儿子)
bool operator< (KD a,KD b)
{
return a.d[ymh]<b.d[ymh];
}
void up(int root)
{
for (int i=0;i<=1;i++)
{
if (t[root].l)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].l].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].l].mx[i]);
}
if (t[root].r)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].r].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].r].mx[i]);
}
}
}
void build(int &x,int l,int r,int dd)
{
ymh = dd;
int mid = l+r >> 1;
x = mid;
nth_element(t+l,t+x,t+r+1);
for (int i=0;i<=1;i++) t[x].mn[i]=t[x].mx[i]=t[x].d[i];
if (l<x) build(t[x].l,l,mid-1,dd^1);
if (x<r) build(t[x].r,mid+1,r,dd^1);
up(x);
}
其实这个题最重要的是估价函数该怎么写。
首先我们很容易发现,因为我们要求的是这个子树理论上到那个点的最短距离,所以我们需要这么考虑,如果当前点的坐标在\(mn到mx\)之间的话,那么理论上的最短距离就是0,否则就是当前这一维度距离\(mn和mx\)较近的距离
double calc(KD a,KD b)
{
double tmp=0;
for (int i=0;i<=1;i++)
{
if (b.d[i]<a.mn[i]) tmp=tmp+(a.mn[i]-b.d[i])*(a.mn[i]-b.d[i]);
else if (b.d[i]>a.mx[i]) tmp=tmp+(a.mx[i]-b.d[i])*(a.mx[i]-b.d[i]);
}
return sqrt(tmp);
}
其实剩下的就是和普通的kdtree差不多了
直接上就好了
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
struct KD{
double mx[4],mn[4],d[4];
int l,r;
};
KD t[maxn],now;
int n,m,root;
int ymh;
double ans;
double tmp;
int ii =0;
bool operator< (KD a,KD b)
{
return a.d[ymh]<b.d[ymh];
}
void up(int root)
{
for (int i=0;i<=1;i++)
{
if (t[root].l)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].l].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].l].mx[i]);
}
if (t[root].r)
{
t[root].mn[i]=min(t[root].mn[i],t[t[root].r].mn[i]);
t[root].mx[i]=max(t[root].mx[i],t[t[root].r].mx[i]);
}
}
}
void build(int &x,int l,int r,int dd)
{
ymh = dd;
int mid = l+r >> 1;
x = mid;
nth_element(t+l,t+x,t+r+1);
for (int i=0;i<=1;i++) t[x].mn[i]=t[x].mx[i]=t[x].d[i];
if (l<x) build(t[x].l,l,mid-1,dd^1);
if (x<r) build(t[x].r,mid+1,r,dd^1);
up(x);
}
double getdis(int a,KD b)
{
if (!a) return 0;
double tmp=0;
for (int i=0;i<=1;i++)
{
tmp=tmp+(t[a].d[i]-b.d[i])*(t[a].d[i]-b.d[i]);
}
return sqrt(tmp);
}
double calc(KD a,KD b)
{
double tmp=0;
for (int i=0;i<=1;i++)
{
if (b.d[i]<a.mn[i]) tmp=tmp+(a.mn[i]-b.d[i])*(a.mn[i]-b.d[i]);
else if (b.d[i]>a.mx[i]) tmp=tmp+(a.mx[i]-b.d[i])*(a.mx[i]-b.d[i]);
}
return sqrt(tmp);
}
void query(int x)
{
if (!x) return;
double d1 = calc(t[t[x].l],now);
double d2 = calc(t[t[x].r],now);
double d = getdis(x,now);
if (d<tmp && d!=0) tmp = d;
if (d==0) ii++;
if (d1<d2)
{
if (d1<tmp) query(t[x].l);
if (d2<tmp) query(t[x].r);
}
else
{
if (d2<tmp) query(t[x].r);
if (d1<tmp) query(t[x].l);
}
}
int main()
{
n=read();
for (int i=1;i<=n;i++)
for (int j=0;j<=1;j++) t[i].d[j]=read();
build(root,1,n,0);
tmp = 1e18;
for (int i=1;i<=n;i++)
{
ii=0;
now = t[i];
query(root);
if (ii>1) tmp=0;
}
printf("%.4lf",tmp);
return 0;
}
洛谷1429 平面最近点对(KDTree)的更多相关文章
- (洛谷 P1429 平面最近点对(加强版) || 洛谷 P1257 || Quoit Design HDU - 1007 ) && Raid POJ - 3714
这个讲的好: https://phoenixzhao.github.io/%E6%B1%82%E6%9C%80%E8%BF%91%E5%AF%B9%E7%9A%84%E4%B8%89%E7%A7%8D ...
- 洛谷 P1429 平面最近点对(加强版) (分治模板题)
题意:有\(n\)个点对,找到它们之间的最短距离. 题解:我们先对所有点对以\(x\)的大小进行排序,然后分治,每次左右二等分递归下去,当\(l+1=r\)的时候,我们计算一下距离直接返回给上一层,若 ...
- Luogu 1429 平面最近点对 | 平面分治
Luogu 1429 平面最近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的 输入输出格式 输入格式: 第一行:n:2≤n≤200000 ...
- 洛谷P1257 平面上的最接近点对
n<=10000个点,求欧几里德距离最小的一对点. 经典分治,把这些点按x排序,分成两半,每边分别算答案,答案是左边的最小,右边的最小,左右组起来的最小三者的最小.发现只有左右组的有点难写. 假 ...
- 洛谷 P6362 平面欧几里得最小生成树
题目描述 平面上有 \(n\) 个点,第 \(i\) 个点坐标为 \((x_i, y_i)\).连接 \(i, j\) 两点的边权为 \(\sqrt{(x_i - x_j) ^ 2 + (y_i - ...
- 【洛谷P4148】简单题(kd-tree)
传送门 题意: 给出一个\(n*n\)的棋盘,现在有两种操作:一种是某个格子里的数字加上\(A\),另一种是询问矩阵和. 空间限制:\(20MB\),强制在线. 思路: 直接\(kd-tree\)来搞 ...
- 洛谷 P1257 平面上的最接近点对 题解
P1257 平面上的最接近点对 题目描述 给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的. 输入格式 第一行:n:2≤n≤10000 接下来n行:每行两 ...
- 洛谷 P4148 简单题 KD-Tree 模板题
Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...
- 洛谷4631 [APIO2018] Circle selection 选圆圈 (KD树)
qwq纪念AC450 一开始想这个题想复杂了. 首先,正解的做法是比较麻烦的. qwqq 那么就不如来一点暴力的东西,看到平面上点的距离的题,不难想到\(KD-Tree\) 我们用类似平面最近点对那个 ...
随机推荐
- freeswitch新增模块
概述 freeswitch的架构由稳定的核心模块和大量的外围插件式模块组成.核心模块保持稳定,外围模块可以动态的加载/卸载,非常灵活方便. 外围模块通过核心提供的 Public API与核心进行通信, ...
- 真实机中安装CentOS
前言 最近在b站上看了兄弟连老师的Linux教程,非常适合入门:https://www.bilibili.com/video/BV1mW411i7Qf 看完后就自己来试着玩下,正好手上有台空闲的电脑就 ...
- 你知道 ES6~ES12等叫法是怎么来的吗?
你知道 ES6~ES12等叫法是怎么来的吗? 前言 作为一名前端开发,学习 JavaScript 自是天经地义的事,但是,JavaScript 的发展历史是怎样的,恐怕有相当一部分人都不太了解. 我们 ...
- 解决 conda tensorflow failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED
参考解决方案1:https://stackoverflow.com/questions/38303974/tensorflow-running-error-with-cublas 参考解决方案2:ht ...
- CSS样式下border的几种线型
在用border的时候经常会忘记它有多少种线型以及各种线型的写法:每次都得从头开始,或是用到Google.百度之类的,有空整理了一下 (1)none (没有边框,无论边框宽度设为多大) (2)dott ...
- 华为分析X HUAWEI Ads,上线深度转化事件回传功能,让ROI 看得见!
华为分析X HUAWEI Ads,上线深度转化事件回传功能,让ROI 看得见! 随着移动应用生态的流量成本攀升.行业竞争加剧,越来越多的广告商希望通过精准投放来获取更高质量的深度转化用户,比如二手车. ...
- Kafka内外网访问
本文介绍了Kafka内外网访问的设置. kafka的两个配置listeners和advertised.listeners listeners kafka监听的网卡的ip,假设你机器上有两张网卡,内网1 ...
- .NET 6 RC1 正式发布
昨天晚上微软发布了.NET 6的两个RC版本中的第一个版本,该版本将于11月正式发布,作为在开源MIT协议下整合所有不同的.NET开发模组件的开源跨平台实现.这是一个从2014年开始,持续多年的,以改 ...
- json包中的Marshal&Unmarshal 文档译本
Marshal func Marshal(v interface{})([]byte, error) Marshal returns the JSON encoding of v. Marshal返回 ...
- vue开发流程
在安装node.js 测试安装 在cmd 下输入node 如查能正确输出命令提示符,表明安装好node 测试安装npm -v 如果能成功出现版本信息表示安装好npm 安装配置 G码云 或 ...