对于一个排列$p_{i}$,假设循环长度依次为$x_{1},x_{2},...,x_{m}$,那么所需步数即${\rm lcm}_{i=1}^{m}x_{i}$

由于是乘积,因此可以枚举素数$p$,并统计其的次数(注意这是对$\varphi(M)=M-1$取模)

类似于$E(X)=\sum_{i\ge 1}P(X\ge i)$,定义$f(k)$表示满足$\exists k\mid x_{i}$的排列数,次数即$\sum_{\alpha\ge 1}f(p^{\alpha})$

关于$f(k)$,考虑总排列数为$n!$,并去掉$\forall 1\le i\le m,k\not\mid x_{i}$的排列数即为所求

令$dp_{i}$表示$n=i$且要求$\forall 1\le j\le m,k\not\mid x_{j}$时的方案数,同样考虑总排列数为$i!$,并去掉$\exists k\mid x_{j}$的排列数即为所求,后者去枚举$\sum_{k\mid x_{j}}x_{j}$,显然剩下的部分即为$dp_{i-\sum_{k\mid x_{j}}x_{j}}$

由此,转移即
$$
dp_{i}=i!-\sum_{1\le j\le \lfloor\frac{i}{k}\rfloor}{i\choose jk}g_{j}dp_{i-jk}
$$
其中$g_{i}$表示$n=ik$且要求$\forall 1\le j\le m,k\mid x_{j}$时的方案数,枚举$n$​所在循环长度,转移即
$$
g_{i}=\sum_{1\le j\le i}{ik-1\choose jk-1}(jk-1)!g_{i-j}
$$
显然计算$g_{i}$的复杂度为$o(\frac{n^{2}}{k^{2}})$,同时由于只需要求$dp_{n}$,根据转移只关心于$i\equiv n(mod\ k)$的$dp_{i}$,因此求$dp_{i}$的复杂度同样为$o(\frac{n^{2}}{k^{2}})$,也即求$f(k)$的复杂度为$o(\frac{n^{2}}{k^{2}})$

而$k$显然$\in [1,n]$且不重复,因此复杂度为$o(\sum_{i=1}^{n}\frac{n^{2}}{i^{2}})$,提出$n^{2}$后该式收敛于$\frac{\pi^{2}}{6}$

综上,总复杂度即为$o(n^{2})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 7505
4 #define ll long long
5 int n,mod,ans,p[N],vis[N],fac[N],C[N][N],g[N],f[N];
6 int qpow(int n,int m){
7 int s=n,ans=1;
8 while (m){
9 if (m&1)ans=(ll)ans*s%mod;
10 s=(ll)s*s%mod;
11 m>>=1;
12 }
13 return ans;
14 }
15 int calc(int k){
16 memset(g,0,sizeof(g));
17 memset(f,0,sizeof(f));
18 g[0]=f[0]=1;
19 for(int i=1;i<=n/k;i++)
20 for(int j=1;j<=i;j++)g[i]=(g[i]+(ll)C[i*k-1][j*k-1]*fac[j*k-1]%(mod-1)*g[i-j])%(mod-1);
21 for(int i=0;i<=n;i++)
22 if (i%k==n%k){
23 f[i]=fac[i];
24 for(int j=1;j<=i/k;j++)f[i]=(f[i]-(ll)C[i][j*k]*g[j]%(mod-1)*f[i-j*k]%(mod-1)+mod-1)%(mod-1);
25 }
26 return (fac[n]-f[n]+mod-1)%(mod-1);
27 }
28 int main(){
29 for(int i=2;i<N;i++){
30 if (!vis[i])p[++p[0]]=i;
31 for(int j=1;(j<=p[0])&&(i*p[j]<N);j++){
32 vis[i*p[j]]=1;
33 if (i%p[j]==0)break;
34 }
35 }
36 scanf("%d%d",&n,&mod);
37 fac[0]=1;
38 for(int i=1;i<N;i++)fac[i]=(ll)i*fac[i-1]%(mod-1);
39 for(int i=0;i<N;i++){
40 C[i][0]=C[i][i]=1;
41 for(int j=1;j<i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%(mod-1);
42 }
43 ans=1;
44 for(int i=1;i<=p[0];i++)
45 for(int j=p[i];j<=n;j*=p[i])ans=(ll)ans*qpow(p[i],calc(j))%mod;
46 printf("%d\n",ans);
47 return 0;
48 }

[loj3284]Exercise的更多相关文章

  1. MIT 6.828 JOS学习笔记12 Exercise 1.9

    Lab 1中Exercise 9的解答报告 Exercise 1.9: 判断一下操作系统内核是从哪条指令开始初始化它的堆栈空间的,以及这个堆栈坐落在内存的哪个地方?内核是如何给它的堆栈保留一块内存空间 ...

  2. MIT 6.828 JOS学习笔记13 Exercise 1.10

    Lab 1 Exercise 10 为了能够更好的了解在x86上的C程序调用过程的细节,我们首先找到在obj/kern/kern.asm中test_backtrace子程序的地址, 设置断点,并且探讨 ...

  3. MIT 6.828 JOS学习笔记11 Exercise 1.8

    Exercise 1.8       我们丢弃了一小部分代码---即当我们在printf中指定输出"%o"格式的字符串,即八进制格式的代码.尝试去完成这部分程序. 解答: 在这个练 ...

  4. MIT 6.828 JOS学习笔记8. Exercise 1.4

    Lab 1 Exercise 4 阅读关于C语言的指针部分的知识.最好的参考书自然是"The C Programming Language". 阅读5.1到5.5节.然后下载poi ...

  5. MIT 6.828 JOS学习笔记9. Exercise 1.5

    Lab 1 Exercise 5 再一次追踪一下boot loader的一开始的几句指令,找到第一条满足如下条件的指令处: 当我修改了boot loader的链接地址,这个指令就会出现错误. 找到这样 ...

  6. MIT 6.828 JOS学习笔记5. Exercise 1.3

    Lab 1 Exercise 3 设置一个断点在地址0x7c00处,这是boot sector被加载的位置.然后让程序继续运行直到这个断点.跟踪/boot/boot.S文件的每一条指令,同时使用boo ...

  7. MIT 6.828 JOS学习笔记3. Exercise 1.2

    这篇博文是对Lab 1中的Exercise 2的解答~ Lab 1 Exercise 2: 使用GDB的'si'命令,去追踪ROM BIOS几条指令,并且试图去猜测,它是在做什么.但是不需要把每个细节 ...

  8. Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

    Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.htm ...

  9. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

随机推荐

  1. MyBatis-Plus——实践篇

    MyBatis-Plus--实践篇 MyBatis-Plus (简称 MP)是一个 MyBatis的增强工具,在 MyBatis 的基础上只做增强不做改变,为简化开发.提高效率而生.进行数据库操作常用 ...

  2. .NET Core 基于Quartz的UI可视化操作组件 GZY.Quartz.MUI 简介

    前言 最近在用Quartz做定时任务.虽然很方便,但是Quartz自己貌似是没有UI界面的..感觉操作起来 就很难受.. 查了一下,貌似有个UI组件 不过看了一下文档..直接给我劝退了..太麻烦了 我 ...

  3. CF536D Tavas in Kansas(博弈论+dp)

    貌似洛谷的题面是没有翻译的 QWQ 大致题面是这个样子,但是可能根据题目本身有不同的地方 完全懵逼的一个题(果然博弈论就是不一样) 首先,我们考虑把题目转化成一个可做的模型. 我们分别从\(s\)和\ ...

  4. CTF入门记录(1

    (https://ctf-wiki.org) 00 基础了解 CTF简介 (wolai.com) 00-1 CTF题目类型 Web 大部分情况下和网.Web.HTTP等相关技能有关. Web攻防的一些 ...

  5. SpringBoot入门01-环境部署

    随笔目录: 环境准备 创建过程 编码试行 环境准备 如果编辑器是还没有配置过相关环境的,在用SpringBoot开发项目的时候,需要先环境,spring boot官网建议的开发工具是: STS或Ide ...

  6. 用 @Value("${xxxx}")注解从配置文件读取值的用法

    1.  用法: 从配置properties文件中读取init.password 的值. @Value("${init.password}") private String init ...

  7. Hadoop集群的配置(一)

    摘要: hadoop集群配置系列文档,是笔者在实验室真机环境实验后整理而得.以便随后工作所需,做以知识整理,另则与博客园朋友分享实验成果,因为笔者在学习初期,也遇到不少问题.但是网上一些文档大多互相抄 ...

  8. [对对子队]会议记录4.13(Scrum Meeting 4)

    今天已完成的工作 梁河览 ​ 工作内容:初步完成存档功能 ​ 相关issue:实现游戏内UI界面使用的组件 马嘉 ​ 工作内容:找到了原料组件 ​ 相关issue:实现游戏内UI界面使用的组件 吴昭邦 ...

  9. [对对子队]会议记录4.14(Scrum Meeting 5)

    今天已完成的工作 刘子航 ​ 工作内容:设计第2,3关 ​ 相关issue:设计关卡2,3 吴昭邦 ​ 工作内容:制作场景,暂时解决了坐标错位问题 ​ 相关issue:实现游戏场景中的必要模型 何瑞 ...

  10. [对对子队]团队任务拆解Alpha

    Alpha阶段主要目标 完成游戏场景的基本实现(不要求美术资源) 完成游戏UI的基本实现(不要求美术资源) 制作第一部分的关卡(顺序语句,制作3-5关) 完成第一部分关卡和游戏基本逻辑的测试 任务分解 ...