TVM 优化 ARM GPU 上的移动深度学习
TVM 优化 ARM GPU 上的移动深度学习
随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长。与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率。但是,大多数现有的深度学习框架并不很好地支持移动 GPU。难点在于移动 GPU 架构和桌面 GPU 架构之间的区别。这意味着在移动 GPU 上进行优化需要特别努力。非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力。
TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困难,从而轻松完成对不同硬件的优化。本文展示了如何使用TVM/NNVM为ARMMaliGPU生成高效的内核,并进行端到端编译。在Mali-T860 MP4的测试中,与ARM计算库相比,方法在VGG-16上快1.4倍,在Mobilet上快2.2倍。图形级别和算子级别优化都有助于加快速度。
Figure1. ImageNet上不同后端的推理速度
Mali Midgrad GPU
将使用萤火飞-RK3399与Mali-T860 MP4作为测试环境,所以主要专注于MaliT8xx。
架构
图1是T860和T880Mali建筑的概述。GPU 可扩展至 16 个连续的着色器内核。每个着色器内核有 2 或 3 条算术管道、1 条负载/存储管道和 1 条纹理管线(称为 TriPipe)。每个算术管道中的 ALU 有四个 128 位矢量单元和一个Mali单元。
使用开放CL进行GPU计算。映射到 OpenCL 模型时,每个着色器内核执行一个或多个工作组。每个着色器内核支持多达 384 个同步执行线程。OpenCL 中的每个工作项目通常映射到Mali GPU 上的单个线程。Mali GPU 使用 VLIW(很长的指令字)架构。每个指令字包含多个算子。Mali GPU 还使用 SIMD,以便大多数算术指令同时在多个数据元素上运行。
Figure 2. Mali T860 and T880
与 NVIDIA GPU 差异
以下是我们在为Mali GPU 编写 OpenCL 代码时应该关注的一些差异,而为 NVIDIA 的 GPU 编写这些差异。
- Mali GPU 使用统一的通用内存。在 NVIDIA 的 GPU 中,通常将数据复制到共享内存中,因为 NVIDIA 的 GPU 具有物理上独立的全局内存、共享内存和注册。Mali副本不能提高性能,可以删除。此外,Mali GPU 通常与 CPU 共享全局内存,无需在 CPU 和 GPU 之间复制。
- Mali MidGrad GPU基于SIMD(单一指令多重数据),需要确定的矢量化。在 NVIDIA CUDA 中,并行通过 SIMT(单指令多线程)实现,不需要确定矢量化。注意,较新的Mali Bitfrost GPU基于quad-style vectorization矢量化,不需要明确的矢量化。
- Mali GPU 的所有线程都有单独的程序计数器。意思是是 1 ,所以
warp size
分支发散不是大问题。
Optimization : Convolution as Example卷积为例
卷积层是最深神经网络的核心,占用了大部分计算时间。以卷积层为例,演示在 TVM 中应用了packing, tiling, unrolling and vectorization等常见优化技术。
Im2Col with GEMM
im2col是卷积层的一个众所周知的算法,将小3D输入立方体转换为矩阵的列,并在GEMM上执行。这种方法的优点是易于利用高度优化的BLAS库。然而,内存冗余(3x3内核的9倍内存)是可怕的。
Spatial Packing
采用一种计算卷积的方法,逐步应用优化技术。VGG-16 中的卷积层用作调谐tuning case,其配置如下。假设批次大小为1作为推理。
Input Shape |
Output Shape |
Kernel Size |
Stride |
Padding |
56x56x256 |
56x56x256 |
3x3 |
(1, 1) |
(1, 1) |
As a baseline, we also list the performance of this layer in Arm Compute Library.
Kernel |
Cost (second) |
GFLOPS |
GEMM method in ARMComputeLib |
0.1821 |
20.3111 |
Declare the computation: tiling and packing
Tiling and packing are two methods intended for better memory access. Tiling separates the whole computation into small blocks for better datareuse. Packing re-layouts the input matrices according to the tiling so that we can access the memory sequentially, which reduces cache miss rate.
平铺和包装是两种用于较好访问内存的方法。平铺将整个计算分离成小块,以便更好的重用数据。Packing根据平铺重新布局输入矩阵,以便能够按顺序访问内存,从而降低缓存误差率。
根据filter矩阵的输入图像和CO维度的宽度进行平铺。由tvm.compute
描述。
# set tiling factor
VH = 1
VW = VC = 4
# get input shape
_, CI, IH, IW = data.shape
CO, CI, KH, KW = kernel.shape
TH = IH + 2 * H_PAD
TW = IW + 2 * W_PAD
# calc output shape
OH = (IH + 2*H_PAD - KH) // H_STR + 1
OW = (IW + 2*W_PAD - KW) // W_STR + 1
# data shape after packing
dvshape = (N, TH // (VH*H_STRIDE), TW // (VW*W_STRIDE), CI, VH*H_STRIDE+HCAT, VW*W_STRIDE+WCAT)
# kernel shape after packing
kvshape = (CO // VC, CI, KH, KW, VC)
ovshape = (N, CO // VC, OH // VH, OW // VW, VH, VW, VC)
oshape = (N, CO, OH, OW)
# define packing
data_vec = tvm.compute(dvshape, lambda n, h, w, ci, vh, vw:
data_pad[n][ci][h*VH*H_STRIDE+vh][w*VW*W_STRIDE+vw], name='data_vec')
kernel_vec = tvm.compute(kvshape, lambda co, ci, kh, kw, vc:
kernel[co*VC+vc][ci][kh][kw], name='kernel_vec')
# define convolution
ci = tvm.reduce_axis((0, CI), name='ci')
kh = tvm.reduce_axis((0, KH), name='kh')
kw = tvm.reduce_axis((0, KW), name='kw')
conv = tvm.compute(ovshape, lambda n, co, h, w, vh, vw, vc:
tvm.sum(data_vec[n, h, w, ci, vh*H_STRIDE+kh, vw*W_STRIDE+kw].astype(out_dtype) *
kernel_vec[co, ci, kh, kw, vc].astype(out_dtype),
axis=[ci, kh, kw]), name='conv')
# unpack to correct layout
output = tvm.compute(oshape, lambda n, co, h, w:
conv[n][co//VC][h/VH][w//VW][h%VH][w%VW][co%VC],
name='output_unpack', tag='direct_conv_output')
We can inspect the defined IR by
print(tvm.lower(s, [data, kernel, output], simple_mode=True))
I pick the convolution part here.
produce conv {
for (co, 0, 64) {
for (h, 0, 56) {
for (w, 0, 14) {
for (vw.init, 0, 4) {
for (vc.init, 0, 4) {
conv[((((((((co*56) + h)*14) + w)*4) + vw.init)*4) + vc.init)] = 0.000000f
}
}
for (ci, 0, 256) {
for (kh, 0, 3) {
for (kw, 0, 3) {
for (vw, 0, 4) {
for (vc, 0, 4) {
conv[((((((((co*56) + h)*14) + w)*4) + vw)*4) + vc)] = (conv[((((((((co*56) + h)*14) + w)*4) + vw)*4) + vc)] + (data_vec[(((((((((h*14) + w)*256) + ci)*3) + kh)*6) + kw) + vw)]*kernel_vec[((((((((co*256) + ci)*3) + kh)*3) + kw)*4) + vc)]))
}
}
}
}
}
}
}
}
}
Kernel 1: bind thread
TVM中,首先声明计算,然后调度。此机制将算法和实现详细信息脱钩。(这个想法来自Halid)。
以下调度表只需将轴与 GPU 线程绑定,代码可以在Mali GPU 上运行。
# helper function for binding thread
def tile_and_bind3d(s, tensor, z, y, x, z_factor=2, y_factor=None, x_factor=None):
""" tile and bind 3d """
y_factor = y_factor or z_factor
x_factor = x_factor or y_factor
zo, zi = s[tensor].split(z, z_factor)
yo, yi = s[tensor].split(y, y_factor)
xo, xi = s[tensor].split(x, x_factor)
s[tensor].bind(zo, tvm.thread_axis("blockIdx.z"))
s[tensor].bind(zi, tvm.thread_axis("threadIdx.z"))
s[tensor].bind(yo, tvm.thread_axis("blockIdx.y"))
s[tensor].bind(yi, tvm.thread_axis("threadIdx.y"))
s[tensor].bind(xo, tvm.thread_axis("blockIdx.x"))
s[tensor].bind(xi, tvm.thread_axis("threadIdx.x"))
# set tunable parameter
num_thread = 8
# schedule data packing
_, h, w, ci, vh, vw = s[data_vec].op.axis
tile_and_bind3d(s, data_vec, h, w, ci, 1)
# schedule kernel packing
co, ci, kh, kw, vc = s[kernel_vec].op.axis
tile_and_bind(s, kernel_vec, co, ci, 1)
# schedule conv
_, c, h, w, vh, vw, vc = s[conv].op.axis
kc, kh, kw = s[conv].op.reduce_axis
s[conv].reorder(_, c, h, w, vh, kc, kh, kw, vw, vc)
tile_and_bind3d(s, conv, c, h, w, num_thread, 1, 1)
_, co, oh, ow = s[output].op.axis
tile_and_bind3d(s, output, co, oh, ow, num_thread, 1, 1)
With this schedule, our code can run now, but the performance is terrible.
Kernel |
Cost (second) |
GFLOPS |
speedup |
GEMM method in ARMComputeLib |
0.1821 |
20.3111 |
1x |
Kernel 1: simple bind |
5.6154 |
0.6588 |
0.03x |
Kernel 2: unrolling
循环展开可以减少循环控制的指令,减少分支处罚并隐藏阅读内存中的延迟。在TVM中,这可以通过调用s.unroll(axis)
来轻松完成。
# set tunable parameter
num_thread = 8
# schedule data packing
_, h, w, ci, vh, vw = s[data_vec].op.axis
tile_and_bind3d(s, data_vec, h, w, ci, 1)
"""!! ADD UNROLL HERE !!"""
s[data_vec].unroll(vw)
# schedule kernel packing
co, ci, kh, kw, vc = s[kernel_vec].op.axis
tile_and_bind(s, kernel_vec, co, ci, 1)
"""!! ADD UNROLL HERE !!"""
s[kernel_vec].unroll(kh)
s[kernel_vec].unroll(kw)
s[kernel_vec].unroll(vc)
# schedule conv
_, c, h, w, vh, vw, vc = s[conv].op.axis
kc, kh, kw = s[conv].op.reduce_axis
s[conv].reorder(_, c, h, w, vh, kc, kh, kw, vw, vc)
tile_and_bind3d(s, conv, c, h, w, num_thread, 1, 1)
"""!! ADD UNROLL HERE !!"""
s[conv].unroll(kh)
s[conv].unroll(kw)
s[conv].unroll(vw)
s[conv].unroll(vc)
_, co, oh, ow = s[output].op.axis
tile_and_bind3d(s, output, co, oh, ow, num_thread, 1, 1)
Kernel |
Cost (second) |
GFLOPS |
speedup |
GEMM method in ARMComputeLib |
0.1821 |
20.3111 |
1x |
Kernel 1: simple bind |
5.6154 |
0.6588 |
0.03x |
Kernel 2: + unrolling |
0.3707 |
9.9796 |
0.49x |
Kernel3: vectorization
如前所述,需要进行解释性向量化,以便在Mali GPU上取得最佳性能。
# set tunable parameter
num_thread = 8
# schedule data packing
_, h, w, ci, vh, vw = s[data_vec].op.axis
tile_and_bind3d(s, data_vec, h, w, ci, 1)
# unroll
s[data_vec].unroll(vw)
# schedule kernel packing
co, ci, kh, kw, vc = s[kernel_vec].op.axis
tile_and_bind(s, kernel_vec, co, ci, 1)
# unroll
s[kernel_vec].unroll(kh)
s[kernel_vec].unroll(kw)
"""!! VECTORIZE HERE !!"""
s[kernel_vec].vectorize(vc)
# schedule conv
_, c, h, w, vh, vw, vc = s[conv].op.axis
kc, kh, kw = s[conv].op.reduce_axis
s[conv].reorder(_, c, h, w, vh, kc, kh, kw, vw, vc)
tile_and_bind3d(s, conv, c, h, w, num_thread, 1, 1)
# unroll
s[conv].unroll(kh)
s[conv].unroll(kw)
s[conv].unroll(vw)
"""!! VECTORIZE HERE !!"""
s[conv].vectorize(vc)
_, co, oh, ow = s[output].op.axis
tile_and_bind3d(s, output, co, oh, ow, num_thread, 1, 1)
Kernel |
Cost (second) |
GFLOPS |
speedup |
GEMM method in ARMComputeLib |
0.1821 |
20.3111 |
1x |
Kernel 1: simple bind |
5.6154 |
0.6588 |
0.03x |
Kernel 2: + unrolling |
0.3707 |
9.9796 |
0.49x |
Kernel 3: + vectorization |
0.1304 |
28.3679 |
1.40x |
如何设置可调参数
至于上面的可调参数,可以计算一些。对于矢量维度,应该填写128位寄存器,设置为128/32+4,用于VC
中float32和128/16=8用于float16。
更常见的情况是,由于runtime复杂,无法确定最佳值。在TVM中使用网格搜索。可以做到非常有效,在TVM的高水平IR,而不是直接OpenCL代码中编写python代码。
生成OpenCL代码
可以查看生成的OpenCL代码
print(func.imported_modules[0].get_source())
OpenCL 代码太长,无法粘贴在这里,并且由于大量展开而难以读取。
端到端基准
本文比较了一些流行的深度神经网络上不同后端之间的综合性能。测试环境:
Firefly-RK3399 4G
CPU: dual-core Cortex-A72 + quad-core Cortex-A53
GPU: Mali-T860MP4
Arm Compute Library : v17.12
MXNet: v1.0.1
Openblas: v0.2.18
We use NNVM and TVM to do end-to-end compilation.
Performance
图3. ImageNet上不同后端的推断速度
如图 3 所示,测试 ImageNet上的推理速度。在Firefly-RK3399上,MaliGPU的速度可以是6核大的2倍~4倍,小端方式。端到端管道比ARM计算库快 1.4 倍~2.2 倍。尝试在ARM计算库中同时采用GEMM 和直接卷积层的方法,在这些测试案例中,GEMM方法总是比直接方法快,所以只绘制GEMM 方法的结果。
图3 中缺少某些结果,如ARM计算库上的 resnet18。这是因为 Arm 计算库的图形runtime目前不支持跳转连接, 并且具有深度卷积的neon implementation实施不良。这也反映了NNVM软件堆栈的优势。
半精度性能
深神经网络的精度不是很重要,尤其是对于移动设备上的推理。使用低精度算术可以使推理更快。还在Mali GPU 上测试了半精度float。
型 |
后端 |
每张图片的时间成本(秒) |
加速到FP32 |
vgg16 |
阿姆Mali |
0.9694 |
1.69 |
vgg16 |
电视 - Mali |
0.6896 |
1.87倍 |
移动网 1.0 |
电视 - Mali |
0.0479 |
1.60倍 |
雷斯网18 |
电视 - Mali |
0.1183 |
1.73倍 |
表1 . 图像网上 FP16 的推理速度
从理论上讲,FP16可以双峰计算和减半内存消耗,使速度翻倍。需要良好的输入形式,以延长矢量化和微调一些参数。
移动设备的进一步工作
应该承认,还有一些改进的余地,主要是在图形水平,如模型压缩和权重排布。
源代码
TVM 优化 ARM GPU 上的移动深度学习的更多相关文章
- TVM在ARM GPU上优化移动深度学习
TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大 ...
- CUDA上的量化深度学习模型的自动化优化
CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参 ...
- supervessel-免费云镜像︱GPU加速的Caffe深度学习开发环境
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即 ...
- win10+anaconda+cuda配置dlib,使用GPU对dlib的深度学习算法进行加速(以人脸检测为例)
在计算机视觉和机器学习方向有一个特别好用但是比较低调的库,也就是dlib,与opencv相比其包含了很多最新的算法,尤其是深度学习方面的,因此很有必要学习一下.恰好最近换了一台笔记本,内含一块GTX1 ...
- Google Colab——用谷歌免费GPU跑你的深度学习代码
Google Colab简介 Google Colaboratory是谷歌开放的一款研究工具,主要用于机器学习的开发和研究.这款工具现在可以免费使用,但是不是永久免费暂时还不确定.Google Col ...
- 图像识别 | AI在医学上的应用 | 深度学习 | 迁移学习
参考:登上<Cell>封面的AI医疗影像诊断系统:机器之心专访UCSD张康教授 Identifying Medical Diagnoses and Treatable Diseases b ...
- SQL语句优化汇总(上) 感动啊 学习 收藏了
原文地址:http://topic.csdn.net/u/20080716/11/2317d040-48e7-42da-822e-040b4c55b46d.html MS SQL Server ...
- 如何在 centos 7.3 上安装 caffe 深度学习工具
有好多朋友在安装 caffe 时遇到不少问题.(看文章的朋友希望关心一下我的创业项目趣智思成) 今天测试并整理一下安装过程.我是在阿里云上测试,选择centos 7.3 镜像. 先安装 epel 源 ...
- Windows上mxnet实战深度学习:Neural Net
前提: 假设已经在Windows上安装配置好mxnet和python语言包. 假设mxnet安装目录为D:\mxnet 假设已安装好wget 可以参考 这篇文章 打开Windows的命令提示符: 执行 ...
随机推荐
- 写了个简洁的Typora+Markdown简历模板
项目地址:https://github.com/CodingDocs/typora-markdown-resume (欢迎小伙伴们使用!个人能力有限,也欢迎小伙伴们一起完善这个简历模板!). 昨天在 ...
- 使用Windows全局钩子打造键盘记录器
简介 键盘记录功能一直是木马等恶意软件窥探用户隐私的标配,那么这个功能是怎么实现的呢?在Ring3级下,微软就为我们内置了一个Hook窗口消息的API,也就是SetWindowsHookEx函数,这个 ...
- CVE-2018-8174(双杀漏洞)复现
目录 CVE-2018-8174双杀漏洞复现一(不稳定) 下载payload MSF监听 CVE-2018-8174双杀漏洞复现二
- Win64 驱动内核编程-30.枚举与删除线程回调
枚举与删除线程回调 进程回调可以监视进程的创建和退出,这个在前面的章节已经总结过了.某些游戏保护的驱动喜欢用这个函数来监视有没有黑名单中的程序运行,如果运行则阻止运行或者把游戏退出.而线程回调则通常用 ...
- Win64 驱动内核编程-24.64位驱动里内嵌汇编
64位驱动里内嵌汇编 讲道理64位驱动是不能直接内链汇编的,遇到这种问题,可以考虑直接把机器码拷贝到内存里,然后直接执行. 获得机器码的方式,可以写好代码之后,直接通过vs看反汇编,然后根据地址在看内 ...
- RSS阅读器 - Reeder
苹果生态圈内最佳RSS阅读器 - Reeder 好用就完事了
- 电脑进入bios和u盘启动快捷键
参考:http://www.jb51.net/os/78638.html 一:联想系列 1:联想笔记本电脑 Thinkpad idea 520 :关机状态下,在左下角用回形针捅小孔,知道出现bios ...
- .NET之生成数据库全流程
开篇语 本文主要是回顾下从项目创建到生成数据到数据库(代码优先)的全部过程.采用EFCore作为ORM框架. 本次示例环境:vs2019.net5.mysql 创建项目 本次事例代码是用过vs2019 ...
- 从执行上下文(ES3,ES5)的角度来理解"闭包"
目录 介绍执行上下文和执行上下文栈概念 执行上下文 执行上下文栈 伪代码模拟分析以下代码中执行上下文栈的行为 代码模拟实现栈的执行过程 通过ES3提出的老概念-理解执行上下文 1.变量对象和活动对象 ...
- 2020.12.14vj补题
A. Lucky Ticket 题意:就是说4与7是幸运数字,用4和7组成的数字也是幸运数字,问所给数字是不是幸运数字 思路:直接敲 代码: 1 #include<iostream> 2 ...