考试的时候一点思路没有,最近听福州的神仙的一些做法。

想自己推一下。

题目大概是这样的

\(a_i = \frac{i\ *\ a_{i - 1} \ + \ i\ * \ (i\ -\ 1)\ * \ a_{i - 2}}{2}+(-1)^i * (1 - \frac{i}{2})\)

\(s_i = \sum_{i = 1}^n C^{n}_{n - i} * (n - i + 1) a_i\)

设母函数\(S(x) = \sum_{i = 0}^{\infty} s_i x^i\)

\(G(x) = \sum_{i = 0}^{\infty} \frac{a_i}{i!} x^i\)

\(F(x) = \sum_{i = 0}^{\infty} \frac{i + 1}{i!} x^i\)

考虑生成函数卷积。

\(S(x) = n!G(x)*F(x)\)

\(F(x) = \sum_{i = 0}^{\infty} \frac{i + 1}{i!} x^i\\=\sum_{i = 1}^{\infty}\frac{1}{(i - 1)!} x^i + \sum_{i = 0}^{\infty}\frac{1}{i!} x^i\\=xe^x + e^x\\=(1 + x)e^x\)

考虑\(G_i = \frac{a_i}{i!}\)

\(2G_i =G_{i - 1} + G_{i - 2} + \frac{(-1)^{i - 1}\ (i - 2)}{i!} - 2[i = 0] + [i = 1] + [i = 2]\\ =G_{i - 1} + G_{i - 2} + \frac{(-1)^{i - 1}}{(i - 1)!} + \frac{(-1)^{i}\ 2}{i!} - 2[i = 0] + [i = 1] + [i = 2]\)

所以\(2G(x) = xG(x) + x^2G(x) + \sum_{i = 1}^{\infty}\frac{(-1)^{i - 1}}{(i - 1)!}x^i + 2\sum_{i = 0}^{\infty}\frac{(-1)^{i}}{(i)!}x^i - 2 + x + x ^ 2\\=
xG(x)+x^2G(x) + xe^{-x} + 2e^{-x} - 2 + x + x ^ 2\)

所以有\((2 - x - x^2)G(x) = (2 + x)e^{-x} - (2 - x - x^2)\)

所以\(G(x) = \frac{e^{-x}}{1 - x} - 1\)

\(S(x) = n!(F(x)G(x))\\=n!((1 + x)e^x\frac{e^{-x}}{1 - x} - (1+x)e^x)\\=n!(\frac{1+x}{1-x} - (1+x)e^x)\\=n!((-1 + \frac{2}{1 - x})-(1+x)e^x)\\=n!\sum_{i = 0}^{\infty}2x^i - n! - n!\sum_{i = 0}^{\infty}\frac{i + 1}{i!}x^i\)

\(S_n = [x ^ n]S(x) = 2n! - n![x == 0] - n - 1\)

完了。

生成函数真好玩,感觉很奇妙的样子

[FJ2021]D2T3题解的更多相关文章

  1. NOIP2017 D2T3 题解

    题面 这种数据范围不是乱搞dfs就是乱搞状压DP 首先应该通过任一方式求出a和b的值: 任意一条抛物线只用两头猪就可以确定,所以我们N^2枚举,并把在这两头猪的抛物线上的猪都存进状态state[i][ ...

  2. 【NOIP题解】NOIP2017 TG D2T3 列队

    列队,NOIP2017 TG D2T3. 树状数组经典题. 题目链接:洛谷. 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. ...

  3. NOIp2016 D2T3 愤怒的小鸟【搜索】(网上题解正解是状压)

    题目传送门 没啥别的想法,感觉就是搜索,经过原点的抛物线已知两个点就可以求出解析式,在还没有被打下来的两个猪之间随意配对,确定解析式之后标记在这个抛物线下被打下来的猪. 猪也可以单独用一个抛物线打下来 ...

  4. NOIP2012 D2T3 疫情控制 题解

    题面 这道题由于问最大值最小,所以很容易想到二分,但怎么验证并且如何实现是这道题的难点: 首先我们考虑,对于一个军队,尽可能的往根节点走(但一定不到)是最优的: 判断一个军队最远走到哪可以树上倍增来实 ...

  5. HEOI2016 题解

    HEOI2016 题解 Q:为什么要在sdoi前做去年的heoi题 A:我省选药丸 http://cogs.pro/cogs/problem/index.php?key=heoi2016 D1T1 树 ...

  6. pkuwc2018题解

    题解: 思路挺好想的..然而今天写代码写成傻逼了 d1t1: 首先比较暴力的就是$f[i][j]$表示i个这个点是j的概率 然后前缀和一下dp就是$n^2$的 部分分树形态随机就说明树深度是$log$ ...

  7. HNOI2018简要题解

    HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为 ...

  8. BJOI2018简要题解

    BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...

  9. CQOI2018简要题解

    CQOI2018简要题解 D1T1 破解 D-H 协议 题意 Diffie-Hellman 密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方在没有事先约定密钥(密码)的情况下,通过不安全的信 ...

随机推荐

  1. iostream 操作符

    iostream 操作符 Input/output manipulators - cppreference.com

  2. Hive面试题整理(一)

    1.Hive表关联查询,如何解决数据倾斜的问题?(☆☆☆☆☆)   1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀.业务数据本身的特.建表时考虑不周.等原因 ...

  3. zip和flatMap没有生效

    在Reactor 中flatMap和zip等没有生效 1.一个简单的示例代码如下: 2.示例运行结果 3.得到结论 最近在项目中使用了 Project Reactor ,但发现代码在写着写着有些地方没 ...

  4. 自定义注解结合切面和spel表达式

    在我们的实际开发中可能存在这么一种情况,当方法参数中的某些条件成立的时候,需要执行一些逻辑处理,比如输出日志.而这些代码可能都是差不多的,那么这个时候就可以结合自定义注解加上切面加上spel表达式进行 ...

  5. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.3 T3 && luogu P4211 [LNOI2014]LCA 题解

    前言: 这题感觉还是很有意思.离线思路很奇妙.可能和二次离线有那么一点点相似?当然我不会二次离线我就不云了. 解析: 题目十分清真. 求一段连续区间内的所有点和某个给出的点的Lca的深度和. 首先可以 ...

  6. TCP/IP参考模型(应用层、传输层、网际层、网络接口层)、五层参考模型(应用层、传输层、网络层、数据链路层、物理层)、OSI与TCP/IP参考模型比较

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/104597450 学习课程:<2019王道考研计算机网络> 学习目的 ...

  7. 字符串压缩 牛客网 程序员面试金典 C++ Python

    字符串压缩 牛客网 程序员面试金典 C++ Python 题目描述 利用字符重复出现的次数,编写一个方法,实现基本的字符串压缩功能.比如,字符串"aabcccccaaa"经压缩会变 ...

  8. Centos7上安装Ubuntu容器

    1.再次之前我们要先装好docker,在上一篇我已经给出了教程,没有安装好的快去看看吧! 2.这里我们使用的是linux系统,所有在线安装是最简便的方法了.我们可以从国内拉取dockerhub镜像,这 ...

  9. BootStrap_1 浓缩版本

    BootStrap(基于JQuery框架) 商业互吹:Bootstrap是最受欢迎的HTML.CSS和JS框架,用于开发响应式布局,移动设备优先选择的WEB项目... 特色:1.响应式布局 2.基于f ...

  10. [LINUX] Arch Linux 硬盘拷贝式装系统+新增 home 分区

    目录 前言 1. 实操 1.1 整个磁盘拷贝 1.2 创建 home 分区 1.3 修改 fstab 实现自动挂载 2. 涉及到的知识点 2.1 fstab 2.2 dd 命令 2.3 fdisk 命 ...