可以看成一张二分图,判断左半部分是否存在完美匹配
根据hall定理,当且仅当左半部分每一个子集所连向的点数量超过了这个子集的大小
都判定复杂度肯定爆炸,可以贪心,一定选择的是一个区间,即对于任意区间[l,r],都要满足$\sum_{i=l}^{r}ai\le (r-l+1+d)k$(ai表示i号鞋子的人数),化简得到$\sum_{i=l}^{r}(ai-k)\le kd$,kd都是定值,因此相当于要维护$ai-k$的最大字段和,线段树即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define ll long long
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 int n,m,x,y;
9 ll k,ls[N],rs[N],sum[N],f[N];
10 void update(int k,int l,int r,int x,int y){
11 if (l==r){
12 ls[k]+=y;
13 rs[k]+=y;
14 sum[k]+=y;
15 f[k]+=y;
16 return;
17 }
18 if (x<=mid)update(L,l,mid,x,y);
19 else update(R,mid+1,r,x,y);
20 ls[k]=max(ls[L],sum[L]+ls[R]);
21 rs[k]=max(rs[R],sum[R]+rs[L]);
22 sum[k]=sum[L]+sum[R];
23 f[k]=max(max(f[L],f[R]),rs[L]+ls[R]);
24 }
25 int main(){
26 scanf("%d%d%d%d",&n,&m,&x,&y);
27 for(int i=1;i<=n;i++)update(1,1,n,i,-x);
28 k=1LL*x*y;
29 for(int i=1;i<=m;i++){
30 scanf("%d%d",&x,&y);
31 update(1,1,n,x,y);
32 if (f[1]<=k)printf("TAK\n");
33 else printf("NIE\n");
34 }
35 }

[bzoj1135]Lyz的更多相关文章

  1. BZOJ1135 LYZ(POI2009) Hall定理+线段树

    做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...

  2. 【BZOJ1135】[POI2009]Lyz 线段树

    [BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...

  3. BZOJ1135: [POI2009]Lyz

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 264  Solved: 106[Submit][Status] ...

  4. 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)

    题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...

  5. 【BZOJ1135】[POI2009]Lyz

    题解: hall定理..第一次听说 思考了半小时无果 二分图匹配时间显然太大 但是有这个hall定理 二分图有完美匹配的充要条件是 对于左边任意一个集合(大小为|s|),其连边点构成的集合(大小为|s ...

  6. [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]

    题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...

  7. BZOJ1135:[POI2009]Lyz(线段树,Hall定理)

    Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...

  8. [BZOJ 1135][POI2009]Lyz

    [BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...

  9. 1135: [POI2009]Lyz

    1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...

随机推荐

  1. 题解 ABC216H Random Robots

    link Solution 考虑一个不合法方案,它一定最后位置的逆序对数不为 \(0\),而且可以发现的是,存在对称方案使得最后逆序对数奇偶性不同,所以我们如果加上 \((-1)\)^{\sigma( ...

  2. MyBatis 中两表关联查询MYSQL (14)

    MyBatis 中两表关联查询MYSQL 1.创建数据库表语句 2.插入测试数据 3.pom文件内容 <?xml version="1.0" encoding="U ...

  3. 【UE4 C++ 基础知识】<4> 枚举 Enum、结构体 Struct

    枚举 UENUM宏搭配BlueprintType可以将枚举暴露给蓝图,不使用的话,仅能在C++使用 //定义一个原生enum class enum class EMyType { Type1, Typ ...

  4. 安装pytorch后import torch显示no module named 'torch'

    问题描述:在pycharm终端里通过pip指令安装pytorch,显示成功安装但是python程序和终端都无法使用pytorch,显示no module named 'torch'. 起因:电脑里有多 ...

  5. pycharm中的terminal和Windows命令提示符有什么区别?二者用pip安装的包是不是位于相同位置?

    那要看pycharm使用了什么shell,可以在设置->工具->终端里查看shell path.如果使用的是cmd.exe那就没区别.pycharm终端和Windows命令提示符用pip安 ...

  6. 什么是产品待办列表?(What is Product Backlog)

    正如scrum指南中所描述的,产品待办事项列表是一个紧急而有序的列表,其中列出了改进产品所需的内容.它是scrum团队承担的工作的唯一来源. 在sprint计划 (Sprint Planning)活动 ...

  7. Java:TreeMap类小记

    Java:TreeMap类小记 对 Java 中的 TreeMap类,做一个微不足道的小小小小记 概述 前言:之前已经小小分析了一波 HashMap类.HashTable类.ConcurrentHas ...

  8. 第一次Alpha Scrum Meeting

    本次会议为Alpha阶段第一次Scrum Meeting会议 会议概要 会议时间:2021年4月22日 会议地点:北航Inspiration Space咖啡厅 会议时长:1小时 会议内容简介:本次会议 ...

  9. qwt使用细节

    在使用QWT进行二维曲线绘制,使用方法如下: class Plot: public QwtPlot { Q_OBJECT -- } 报错:error LNK2001: 无法解析的外部符号"p ...

  10. C语言零基础入门难发愁,那就快来看看这篇基础整理资料吧

    C语言程序的结构认识 用一个简单的c程序例子,介绍c语言的基本构成.格式.以及良好的书写风格,使小伙伴对c语言有个初步认识. 例1:计算两个整数之和的c程序: #include main() { in ...