可以看成一张二分图,判断左半部分是否存在完美匹配
根据hall定理,当且仅当左半部分每一个子集所连向的点数量超过了这个子集的大小
都判定复杂度肯定爆炸,可以贪心,一定选择的是一个区间,即对于任意区间[l,r],都要满足$\sum_{i=l}^{r}ai\le (r-l+1+d)k$(ai表示i号鞋子的人数),化简得到$\sum_{i=l}^{r}(ai-k)\le kd$,kd都是定值,因此相当于要维护$ai-k$的最大字段和,线段树即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define ll long long
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 int n,m,x,y;
9 ll k,ls[N],rs[N],sum[N],f[N];
10 void update(int k,int l,int r,int x,int y){
11 if (l==r){
12 ls[k]+=y;
13 rs[k]+=y;
14 sum[k]+=y;
15 f[k]+=y;
16 return;
17 }
18 if (x<=mid)update(L,l,mid,x,y);
19 else update(R,mid+1,r,x,y);
20 ls[k]=max(ls[L],sum[L]+ls[R]);
21 rs[k]=max(rs[R],sum[R]+rs[L]);
22 sum[k]=sum[L]+sum[R];
23 f[k]=max(max(f[L],f[R]),rs[L]+ls[R]);
24 }
25 int main(){
26 scanf("%d%d%d%d",&n,&m,&x,&y);
27 for(int i=1;i<=n;i++)update(1,1,n,i,-x);
28 k=1LL*x*y;
29 for(int i=1;i<=m;i++){
30 scanf("%d%d",&x,&y);
31 update(1,1,n,x,y);
32 if (f[1]<=k)printf("TAK\n");
33 else printf("NIE\n");
34 }
35 }

[bzoj1135]Lyz的更多相关文章

  1. BZOJ1135 LYZ(POI2009) Hall定理+线段树

    做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...

  2. 【BZOJ1135】[POI2009]Lyz 线段树

    [BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...

  3. BZOJ1135: [POI2009]Lyz

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 264  Solved: 106[Submit][Status] ...

  4. 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)

    题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...

  5. 【BZOJ1135】[POI2009]Lyz

    题解: hall定理..第一次听说 思考了半小时无果 二分图匹配时间显然太大 但是有这个hall定理 二分图有完美匹配的充要条件是 对于左边任意一个集合(大小为|s|),其连边点构成的集合(大小为|s ...

  6. [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]

    题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...

  7. BZOJ1135:[POI2009]Lyz(线段树,Hall定理)

    Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...

  8. [BZOJ 1135][POI2009]Lyz

    [BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...

  9. 1135: [POI2009]Lyz

    1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...

随机推荐

  1. SpringMVC 获得请求数据

    获得请求参数 客户端请求参数的格式是:name=value&name=value- - 服务器端要获得请求的参数,有时还需要进行数据的封装,SpringMVC可以接收如下类型的参数: 基本类型 ...

  2. 这么多TiDB负载均衡方案总有一款适合你

    [是否原创]是 [首发渠道]TiDB 社区 前言 分布式关系型数据库TiDB是一种计算和存储分离的架构,每一层都可以独立地进行水平扩展,这样就可以做到有的放矢,对症下药. 从TiDB整体架构图可以看到 ...

  3. Java(10)认识类和对象

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201574.html 博客主页:https://www.cnblogs.com/testero ...

  4. 二、Ansible基础之模块篇

    目录 1. Ansible Ad-Hoc 命令 1.1 命令格式 1.2 模块类型 1.3 联机帮助 1.3.1 常用帮助参数 1.4 常用模块 1.4.1 command & shell 模 ...

  5. 51.N皇后问题

    n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 给定一个整数 n,返回所有不同的 n 皇后问题的解决方案. 每一种解法包含一个明确的 n 皇后问题的棋 ...

  6. 新產品SWOT分析實例

    推出新产品需要解决四个行销支柱: 价格 产品 促销 销售地点 要分析这些方面,请检查您的优势.劣势.机会和威胁,以帮助您在运行第一个广告或举行第一次促销之前将风险降至最低,并最大限度地利用资源.SWO ...

  7. UltraSoft - Alpha - Scrum Meeting 1

    Date: Apr 06th, 2020. 会议内容为讨论功能规格书和技术规格书的撰写. Scrum 情况汇报 进度情况 组员 负责 昨日进度 后两日任务 CookieLau PM.后端 进行Djan ...

  8. BUAA 2020 软件工程 结对项目作业

    Author: 17373051 郭骏 3.28添加:4.计算模块接口的设计与实现过程部分,PairCore实现的细节 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) ...

  9. 局域网(以太网与IEEE 802.3、IEEE 802.11、)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105016637 学习课程:<2019王道考研计算机网络> 学习目的 ...

  10. 攻防世界 杂项 5.wireshark-1

    题目描述: 黑客通过wireshark抓到管理员登陆网站的一段流量包(管理员的密码即是答案). flag提交形式为flag{XXXX} 看到登录应该想到它是HTTP POST请求,wireshark搜 ...