[atARC076E]Connected
首先,如果没有这个平面的限制,考虑不断插入一对点,将与这两点连线有交的线从左到右,依次“移动”到左端点边上,因此一定是可行的
但当存在界限后,对于两个端点都在边界上的点对(一个端点在边界上还是可以用同样的构造),需要判断是否存在合法解:
如果将整个边界看作一个环,若存在两个点对$i$和$j$满足以$ijij$的顺序,那么一定不合法
同时,若不存在这样的关系,通过上述构造,先练两个端点不都在边界上的点对,再连都在边界上的点对,一定可行
考虑如何判定,由于这样的点对从任意一个点开始都是这样的形式,因此从某一点出发,维护一个栈表示当前还没有匹配的点,若当前点已经被插入栈中,且不为栈顶则无解,否则删除栈顶即可


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define y1 y11
5 vector<int>v;
6 vector<pair<int,int> >vv[4];
7 stack<int>st;
8 int r,c,n,x1,y1,x2,y2,vis[N];
9 bool pd(int x,int y){
10 return ((!x)||(y==c)||(x==r)||(!y));
11 }
12 void push(int x,int y,int k){
13 if (!x)vv[0].push_back(make_pair(y,k));
14 else{
15 if (y==c)vv[1].push_back(make_pair(x,k));
16 else{
17 if (x==r)vv[2].push_back(make_pair(y,k));
18 else{
19 if (!y)vv[3].push_back(make_pair(x,k));
20 }
21 }
22 }
23 }
24 int main(){
25 scanf("%d%d%d",&r,&c,&n);
26 for(int i=1;i<=n;i++){
27 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
28 if ((pd(x1,y1))&&(pd(x2,y2))){
29 push(x1,y1,i);
30 push(x2,y2,i);
31 }
32 }
33 for(int i=0;i<4;i++)sort(vv[i].begin(),vv[i].end());
34 for(int i=0;i<4;i++)
35 if (i<2)
36 for(int j=0;j<vv[i].size();j++)v.push_back(vv[i][j].second);
37 else
38 for(int j=vv[i].size()-1;j>=0;j--)v.push_back(vv[i][j].second);
39 for(int i=0;i<v.size();i++)
40 if (!vis[v[i]]){
41 vis[v[i]]=1;
42 st.push(v[i]);
43 }
44 else{
45 if (st.top()!=v[i]){
46 printf("NO");
47 return 0;
48 }
49 st.pop();
50 }
51 printf("YES");
52 }
[atARC076E]Connected的更多相关文章
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- poj 1737 Connected Graph
// poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- Windows Phone 8 解锁提示IpOverUsbSvc问题——IpOverUsbEnum返回No connected partners found解决方案
我的1520之前总是无法解锁,提示:IpOverUsbSvc服务没有开启什么的. 根据网上网友的各种解决方案: 1. 把手机时间设置为当前时间,并且关闭“自动设置” 2. 确保手机接入了互联网 3.确 ...
- POJ1737 Connected Graph
Connected Graph Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3156 Accepted: 1533 D ...
- [LintCode] Find the Weak Connected Component in the Directed Graph
Find the number Weak Connected Component in the directed graph. Each node in the graph contains a ...
- Supporting Connected Routes to Subnet Zero
Supporting Connected Routes to Subnet Zero IOS allows the network engineer to tell a router to eithe ...
- lintcode:Find the Connected Component in the Undirected Graph 找出无向图汇总的相连要素
题目: 找出无向图汇总的相连要素 请找出无向图中相连要素的个数. 图中的每个节点包含其邻居的 1 个标签和 1 个列表.(一个无向图的相连节点(或节点)是一个子图,其中任意两个顶点通过路径相连,且不与 ...
随机推荐
- Cobar提出的一种在分库场景下对Order By / Limit 的优化
搜索关注微信公众号"捉虫大师",后端技术分享,架构设计.性能优化.源码阅读.问题排查.踩坑实践. 本文已收录 https://github.com/lkxiaolou/lkxiao ...
- Java中JDK、JRE和JVM三者之间有什么区别和联系?Java基础!
任何语言或软件都需要一个运行环境.正如人想生活在空气中,鱼想生活在水中一样,喜荫植物不能暴露在阳光下,任何物体个体的存在都离不开其所需的环境,编程语言也是一样的. 接下来就详细描述一下Java中JDK ...
- 洛谷4035 JSOI2008球形空间产生器 (列柿子+高斯消元)
题目链接 qwq 首先看到这个题,感觉就应该从列方程入手. 我们设给定的点的坐标矩阵是\(x\),然后球心坐标\(a_1,a_2....a_n\) 根据欧几里得距离公式,对于一个\(n维空间\)的第\ ...
- SpringBoot入门02-配置类
引入 Spring Boot的底层已经有了Spring MVC Spring Boot习惯优先的思想,很多配置都是可省的 不需要配置web.xml文件 不需要服务层的xml配置 不需要dao层的xml ...
- FastAPI 学习之路(十)请求体的字段
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...
- Fikker 管理平台弱口令
官网:www.fikker.com 应用介绍:Fikker 是一款面向 CDN/站长 的专业级网站缓存(Webcache)和反向代理服务器软件(Reverse Proxy Server). 发现过程: ...
- 对cpu与load的理解及线上问题处理思路
cpu如何计算 当我们执行top命令的时候,看到里面的值(主要是cpu和load)值是一直在变的,因此有必要简单了解一下Linux系统中cpu的计算方式. cpu分为系统cpu和进程.线程cpu,系统 ...
- 无网环境安装docker之--rpm
总体思路:找一台可以联网的linux,下载docker的RPM依赖包而不进行安装(yum localinstall),将所有依赖的rpm环境打包好,再在无网环境中解压逐一安装(rpm: --forc ...
- 网络通信IO的演变过程(一)(一个门外汉的理解)
以前从来不懂IO的底层,只知道一个大概,就是输入输出的管道怼到一起,然后就可以传输数据了. 最近看了周志垒老师的公开课后,醍醐灌顶. 所以做一个简单的记录. 0 计算机组成原理相关 0.1. 计算机的 ...
- [no_code][Beta]事后分析
设想和目标 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们要解决的目前的手写表单的电子化问题,办公电子化问题的一个key问题.定义十分清楚: 输入: 手写表单 ...