首先,如果没有这个平面的限制,考虑不断插入一对点,将与这两点连线有交的线从左到右,依次“移动”到左端点边上,因此一定是可行的

但当存在界限后,对于两个端点都在边界上的点对(一个端点在边界上还是可以用同样的构造),需要判断是否存在合法解:

如果将整个边界看作一个环,若存在两个点对$i$和$j$满足以$ijij$的顺序,那么一定不合法

同时,若不存在这样的关系,通过上述构造,先练两个端点不都在边界上的点对,再连都在边界上的点对,一定可行

考虑如何判定,由于这样的点对从任意一个点开始都是这样的形式,因此从某一点出发,维护一个栈表示当前还没有匹配的点,若当前点已经被插入栈中,且不为栈顶则无解,否则删除栈顶即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define y1 y11
5 vector<int>v;
6 vector<pair<int,int> >vv[4];
7 stack<int>st;
8 int r,c,n,x1,y1,x2,y2,vis[N];
9 bool pd(int x,int y){
10 return ((!x)||(y==c)||(x==r)||(!y));
11 }
12 void push(int x,int y,int k){
13 if (!x)vv[0].push_back(make_pair(y,k));
14 else{
15 if (y==c)vv[1].push_back(make_pair(x,k));
16 else{
17 if (x==r)vv[2].push_back(make_pair(y,k));
18 else{
19 if (!y)vv[3].push_back(make_pair(x,k));
20 }
21 }
22 }
23 }
24 int main(){
25 scanf("%d%d%d",&r,&c,&n);
26 for(int i=1;i<=n;i++){
27 scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
28 if ((pd(x1,y1))&&(pd(x2,y2))){
29 push(x1,y1,i);
30 push(x2,y2,i);
31 }
32 }
33 for(int i=0;i<4;i++)sort(vv[i].begin(),vv[i].end());
34 for(int i=0;i<4;i++)
35 if (i<2)
36 for(int j=0;j<vv[i].size();j++)v.push_back(vv[i][j].second);
37 else
38 for(int j=vv[i].size()-1;j>=0;j--)v.push_back(vv[i][j].second);
39 for(int i=0;i<v.size();i++)
40 if (!vis[v[i]]){
41 vis[v[i]]=1;
42 st.push(v[i]);
43 }
44 else{
45 if (st.top()!=v[i]){
46 printf("NO");
47 return 0;
48 }
49 st.pop();
50 }
51 printf("YES");
52 }

[atARC076E]Connected的更多相关文章

  1. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  2. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  3. poj 1737 Connected Graph

    // poj 1737 Connected Graph // // 题目大意: // // 带标号的连通分量计数 // // 解题思路: // // 设f(n)为连通图的数量,g(n)为非连通图的数量 ...

  4. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  5. Windows Phone 8 解锁提示IpOverUsbSvc问题——IpOverUsbEnum返回No connected partners found解决方案

    我的1520之前总是无法解锁,提示:IpOverUsbSvc服务没有开启什么的. 根据网上网友的各种解决方案: 1. 把手机时间设置为当前时间,并且关闭“自动设置” 2. 确保手机接入了互联网 3.确 ...

  6. POJ1737 Connected Graph

    Connected Graph Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3156   Accepted: 1533 D ...

  7. [LintCode] Find the Weak Connected Component in the Directed Graph

      Find the number Weak Connected Component in the directed graph. Each node in the graph contains a ...

  8. Supporting Connected Routes to Subnet Zero

    Supporting Connected Routes to Subnet Zero IOS allows the network engineer to tell a router to eithe ...

  9. lintcode:Find the Connected Component in the Undirected Graph 找出无向图汇总的相连要素

    题目: 找出无向图汇总的相连要素 请找出无向图中相连要素的个数. 图中的每个节点包含其邻居的 1 个标签和 1 个列表.(一个无向图的相连节点(或节点)是一个子图,其中任意两个顶点通过路径相连,且不与 ...

随机推荐

  1. Network Analyst Tools(Network Analyst 工具)

    Network Analyst 工具 1.分析 # Process: 创建 OD 成本矩阵图层 arcpy.MakeODCostMatrixLayer_na("", "O ...

  2. 洛谷4400 BlueMary的旅行(分层图+最大流)

    qwq 首先,我们观察到题目中提到的每天只能乘坐一次航班的限制,很容易想到建分层图,也就是通过枚举天数,然后每天加入一层新的点. (然而我一开始想的却是erf) 考虑从小到大枚举天数,然后每次新建一层 ...

  3. 内网渗透DC-1靶场通关(CTF)

    最新博客见我的个人博客地址 DC系列共9个靶场,本次来试玩一下DC-1,共有5个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware可能存在兼容性问题. ...

  4. Succeed_School

    # Author kevin_hou class School(object): def __init__(self,name,addr): self.name = name self.addr = ...

  5. 用css写三角形

    html部分 <div class="triangle></div> css部分 .triangle{ width:0; height:0; overflow:hid ...

  6. 安装pytorch后import torch显示no module named 'torch'

    问题描述:在pycharm终端里通过pip指令安装pytorch,显示成功安装但是python程序和终端都无法使用pytorch,显示no module named 'torch'. 起因:电脑里有多 ...

  7. Docker制作能够ssh连接的镜像

    本类文章只作为记录使用 命令操作: #拉取Centos 7 docker pull centos:7 #运行一个镜像 docker run -tdi --privileged centos:7 ini ...

  8. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...

  9. 震惊,本Orzer下阶段直接怒送四个笑脸

    众所周知,在hzoi帝国中,Wzx是最菜的.那么究竟有多菜呢?下面就和小编一起来看看吧. 近日,hzoi最菜的wzx在第四阶段竟然怒送4个笑脸,同机房神犇直呼wzx太菜了! 以上就是wzx第四阶段怒送 ...

  10. Linux入门必须养成的七大习惯

    对于很多Linux初学者来说,在刚开始使用linux系统时会感到很多的不适.这里为大家整理了自己以前linux入门时别人告诉我的七个习惯.我相信如果你运用了这七个习惯,在你使用Linux时你会感觉更安 ...