Adversarially Robust Generalization Requires More Data
@article{schmidt2018adversarially,
title={Adversarially Robust Generalization Requires More Data},
author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},
pages={5014--5026},
year={2018}}
概
本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.
主要内容
高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).
伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]
分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).
Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).
注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).
高斯模型
upper bound
定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:
\]
定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果
\]
则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).
lower bound
定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少为
\]
伯努利模型
upper bound
令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).
lower bound
引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),
\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).
\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).
Near-optimality of \(\theta^*\): 对于任意的线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).
定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当
\]
\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).
Adversarially Robust Generalization Requires More Data的更多相关文章
- Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...
- 自定义 ASP.NET Identity Data Model with EF
One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...
- ExtJs Ext.data.Model 学习笔记
Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...
- Buffer Data
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- Buffer Data RDMA 零拷贝 直接内存访问
waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...
- A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON ...
- Wide and Deep Learning Model
https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...
- Android开发训练之第五章——Building Apps with Connectivity & the Cloud
Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...
- C# Interview Questions:C#-English Questions
This is a list of questions I have gathered from other sources and created myself over a period of t ...
随机推荐
- Redis6 新特性
Redis6新特性 ACL安全策略 ACL(access control list): 访问控制列表,可以设置多个用户,并且给每个用户单独设置命令权限和数据权限 default用户和使用require ...
- 【bfs】洛谷 P1443 马的遍历
题目:P1443 马的遍历 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 记录一下第一道ac的bfs,原理是利用队列queue记录下一层的所有点,然后一层一层遍历: 其中: 1.p ...
- C++ 之杂记
今天做了一个题,代码不难,但是编译的时候就恼火,老是报错,也不告诉我错哪了.... 之前的代码是这样的,在main函数中调用这个类的构造函数,就一直报错,但是不知道原因,后来加上了const 就好了. ...
- oracle(查询数据库对象1)
1 --查询表信息 2 xxx_tables--包含表的基本描述信息和统计信息 3 xxx_tab_columns--包含表中列的描述信息和统计信息 4 xxx_all_tables--包含当前数据库 ...
- tableView和tableViewCell的背景颜色问题
当在tableView中添加cell数据时,我们会发现原本设置的tableView的背景颜色不见了,这是因为加载cell数据时,tableView的背景颜色被cell数据遮盖住了,此时,可以通过设置c ...
- OpenStack之六: plancement服务(端口8778)
官网地址:https://docs.openstack.org/placement/stein/install/install-rdo.html #:创建placement库,并授权 MariaDB ...
- APICloud - 提交项目 点击右键 没有git这个选项
你们是不是也遇到过这个问题,吧项目检出来后,花了很久的时间,好不容易吧项目改完,提交的时候点击鼠标右键,发现git选项没有在里面了,找不到,但是这个问题也不是很常遇到,机率很小,下面我来告诉你们吧 原 ...
- MySQL索引及性能优化分析
一.SQL性能下降的原因 查询语句问题,各种连接.子查询 索引失效(单值索引.复合索引) 服务器调优及各个参数设置(缓冲.线程池等) 二.索引 排好序的快速查找数据结构 1. 索引分类 单值索引 一个 ...
- Consumer方法结合Lambda表达式的应用
package com.itheima.demo05.Consumer;import java.util.function.Consumer;/** * @author newcityman * @d ...
- 10.Object类
在JAVA中,所有的类都直接或间接继承了Java.lang.Object类Object是一个特殊的类,他是所有类的父类,是Java类层中的最高层类.当创建一个类时,他总是在继承,除非某个类已经指定要从 ...