Schmidt L, Santurkar S, Tsipras D, et al. Adversarially Robust Generalization Requires More Data[C]. neural information processing systems, 2018: 5014-5026.

@article{schmidt2018adversarially,

title={Adversarially Robust Generalization Requires More Data},

author={Schmidt, Ludwig and Santurkar, Shibani and Tsipras, Dimitris and Talwar, Kunal and Madry, Aleksander},

pages={5014--5026},

year={2018}}

本文在二分类高斯模型和伯努利模型上分析adversarial, 指出对抗稳定的模型需要更多的数据支撑.

主要内容

高斯模型定义: 令\(\theta^* \in \mathbb{R}^n\)为均值向量, \(\sigma >0\), 则\((\theta^*, \sigma)\)-高斯模型按照如下方式定义: 首先从等概率采样标签\(y \in \{\pm 1\}\), 再从\(\mathcal{N}(y \cdot \theta^*, \sigma^2I)\)中采样\(x \in \mathbb{R}^d\).

伯努利模型定义: 令\(\theta^* \in \{\pm1\}^d\)为均值向量, \(\tau >0\), 则\((\theta^*, \tau)\)-伯努利模型按照如下方式定义: 首先等概率采样标签\(y \in \{\pm 1\}\), 在从如下分布中采样\(x \in \{\pm 1\}^d\):

\[x_i =
\left \{
\begin{array}{rl}
y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2+\tau \\
-y \cdot \theta_i^* & \mathrm{with} \: \mathrm{probability} \: 1/2-\tau
\end{array} \right.
\]

分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的分类错误\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [f(x) \not =y]\).

Robust分类错误定义: 令\(\mathcal{P}: \mathbb{R}^d \times \{\pm 1\} \rightarrow \mathbb{R}\)为一分布, \(\mathcal{B}: \mathbb{R}^d \rightarrow \mathscr{P}(\mathbb{R}^d)\)为一摄动集合. 则分类器\(f:\mathbb{R}^d \rightarrow \{\pm1\}\)的\(\mathcal{B}\)-robust 分类错误率\(\beta\)定义为\(\beta=\mathbb{P}_{(x, y) \sim \mathcal{P}} [\exist x' \in \mathcal{B}(x): f(x') \not = y]\).

注: 以\(\mathcal{B}_p^{\epsilon}(x)\)表示\(\{x' \in \mathbb{R}^d|\|x'-x\|_p \le \epsilon\}\).

高斯模型

upper bound

定理18: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为:

\[\exp (-\frac{(2\sqrt{n}-1)^2d}{2(2\sqrt{n}+4\sigma)^2\sigma^2}).
\]

定理21: 令\((x_1,y_1),\ldots, (x_n,y_n) \in \mathbb{R}^d \times \{\pm 1\}\) 独立采样于同分布\((\theta^*, \sigma)\)-高斯模型, 且\(\|\theta^*\|_2=\sqrt{d}\). 令\(\hat{w}:=\bar{z}/\|\bar{z}\| \in \mathbb{R}^d\), 其中\(\bar{z}=\frac{1}{n} \sum_{i=1}^n y_ix_i\). 如果

\[\epsilon \le \frac{2\sqrt{n}-1}{2\sqrt{n}+4\sigma} - \frac{\sigma\sqrt{2\log 1/\beta}}{\sqrt{d}},
\]

则至少有\(1-2\exp(-\frac{d}{8(\sigma^2+1)})\)的概率, 线性分类器\(f_{\hat{w}}\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至多为\(\beta\).

lower bound

定理11: 令\(g_n\)为任意的学习算法, 并且, \(\sigma > 0, \epsilon \ge 0\), 设\(\theta \in \mathbb{R}^d\)从\(\mathcal{N}(0,I)\)中采样. 并从\((\theta,\sigma)\)-高斯模型中采样\(n\)个样本, 由此可得到分类器\(f_n: \mathbb{R}^d \rightarrow \{\pm 1\}\). 则分类器关于\(\theta, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的\(\ell_{\infty}^{\epsilon}\)-robust 分类错误率至少

\[\frac{1}{2} \mathbb{P}_{v\sim \mathcal{N}(0, I)} [\sqrt{\frac{n}{\sigma^2+n}} \|v\|_{\infty} \le \epsilon ].
\]

伯努利模型

upper bound

令\((x, y) \in \mathbb{R}^d \times \{\pm1\}\)从一\((\theta^*, \tau)\)-伯努利模型中采样得到. 令\(\hat{w}=z / \|z\|_2\), 其中\(z=yx\). 则至少有\(1- \exp (-\frac{\tau^2d}{2})\)的概率, 线性分类器\(f_{\hat{w}}\)的分类错误率至多为\(\exp (-2\tau^4d)\).

lower bound

引理30: 令\(\theta^* \in \{\pm1\}^d\) 并且关于\((\theta^*, \tau)-伯努利模型\)考虑线性分类器\(f_{\theta^*}\),

\(\ell_{\infty}^{\tau}\)-robustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{\tau}\)-robust分类误差率至多为\(2\exp (-\tau^2d/2)\).

\(\ell_{\infty}^{3\tau}\)-nonrobustness: \(f_{\theta^*}\)的\(\ell_{\infty}^{3\tau}\)-robust分类误差率至少为\(1-2\exp (-\tau^2d/2)\).

Near-optimality of \(\theta^*\): 对于任意线性分类器, \(\ell_{\infty}^{3\tau}\)-robust 分类误差率至少为\(\frac{1}{6}\).

定理31: 令\(g_n\)为任一线性分类器学习算法. 假设\(\theta^*\)均匀采样自\(\{\pm1\}^d\), 并从\((\theta^*, \tau)\)-伯努利分布(\(\tau \le 1/4\))中采样\(n\)个样本, 并借由\(g_n\)得到线性分类器\(f_{w}\).同时\(\epsilon < 3\tau\)且\(0 < \gamma < 1/2\), 则当

\[n \le \frac{\epsilon^2\gamma^2}{5000 \cdot \tau^4 \log (4d/\gamma)},
\]

\(f_w\)关于\(\theta^*, (y_1,\ldots, y_n), (x_1,\ldots, x_n)\)的期望\(\ell_{\infty}^{\epsilon}\)-robust 分类误差至少为\(\frac{1}{2}-\gamma\).

Adversarially Robust Generalization Requires More Data的更多相关文章

  1. Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

    目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...

  2. 自定义 ASP.NET Identity Data Model with EF

    One of the first issues you will likely encounter when getting started with ASP.NET Identity centers ...

  3. ExtJs Ext.data.Model 学习笔记

    Using a Proxy Ext.define('User', { extend: 'Ext.data.Model', fields: ['id', 'name', 'email'], proxy: ...

  4. Buffer Data

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  5. Buffer Data RDMA 零拷贝 直接内存访问

    waylau/netty-4-user-guide: Chinese translation of Netty 4.x User Guide. 中文翻译<Netty 4.x 用户指南> h ...

  6. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  7. Wide and Deep Learning Model

    https://blog.csdn.net/starzhou/article/details/78845931 The Wide and Deep Learning Model(译文+Tensorlf ...

  8. Android开发训练之第五章——Building Apps with Connectivity & the Cloud

    Building Apps with Connectivity & the Cloud These classes teach you how to connect your app to t ...

  9. C# Interview Questions:C#-English Questions

    This is a list of questions I have gathered from other sources and created myself over a period of t ...

随机推荐

  1. vue-baidu-map相关随笔

    一,使用vue-baidu-map 1.下载相关包依赖 npm i vue-baidu-map   2.在main.js中import引入相关包依赖,在main.js中添加如下代码: import B ...

  2. day05 django框架之路由层

    day05 django框架之路由层 今日内容概要 简易版django请求声明周期流程图(重要) 路由匹配 无名有名分组 反向解析 无名有名解析 路由分发 名称空间 伪静态 虚拟环境 简易版djang ...

  3. Spark基础:(一)初识Spark

    1.Spark中的Python和Scala的Shell (1): Python的Spark Shell 也就是我们常说的PySpark Shell进入我们的Spark目录中然后输入 bin/pyspa ...

  4. git 的基本流程

    有个本地文件 打开 新建一个 打开git $ git push origin master 这里是上传文件.  (你每次上传的时候,都要先提交到本地的仓库...然后再上传) github上就有了 如何 ...

  5. Docker学习(三)——Docker镜像使用

    Docker镜像使用     当运行容器时,使用的镜像如果在本地中不存在,docker就会自动从docker镜像仓库中下载,默认是从Docker Hub公共镜像源下载. 1.镜像使用     (1)列 ...

  6. mysql 5.7 压缩包安装教程

    前言 :  避免之前装的MySQL影响 首先进入dos窗口执行 sc delete mysql      删除已有的mysql服务 (一) 下载MySQL5.7 版本压缩包 网址 https://de ...

  7. 重量级&轻量级

    重量级 就是说包的大小,还有就是与个人项目的耦合程度,重量级的框架与项目耦合程度大些 代表EJB容器的服务往往是"买一送三",不要都不行 轻量级 就是相对较小的包,当然与项目的耦合 ...

  8. 【Linux】【Shell】【Basic】数组

    1. 数组:         变量:存储单个元素的内存空间:         数组:存储多个元素的连续的内存空间:             数组名:整个数组只有一个名字:             数组 ...

  9. 11.Vue.js-事件处理器

    事件监听可以使用 v-on 指令: <div id="app"> <button v-on:click="counter += 1">增 ...

  10. Sentry 开发者贡献指南 - 前端(ReactJS生态)

    内容整理自官方开发文档 系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Map ...