目录

Zhao J., Mathieu M. & LeCun Y. Energy-based generative adversarial networks. ICLR, 2017.

基于能量的一个解释.

主要内容

本文采用了与GAN不同的损失, 判别器\(D\)和生成器\(G\)分别最小化下面的损失:

\[\mathcal{L}_D (x, z) = D(x) + [m-D(G(z))]^+ \\
\mathcal{L}_G(z) = D(G(z))
\]

需要注意的是, 这里的判别器\(D\)的输出已经不是普通GAN中判别器的真假概率了, 而是能量, 能量越低,即\(D(x)\)越小, 越真.

用\(V(G, D)= \int_{x, z} \mathcal{L}_D(x, z) p_{data}(x) p_g(z) \mathrm{d}x\mathrm{d}z\), 用\(U(G,D) = \int_{z} \mathcal{L}_G(z) p_g(z)\mathrm{d}z\), 考虑如下纳什均衡

\[V(G^*, D^*) \le V(G^*, D), \quad \forall D \\
U(G^*, D^*) \le U(G, D^*), \quad \forall G.
\]

第一个需要考虑的问题是, 这样的纳什均衡解会有什么好的性质呢?

定理1: \((G^*, D^*)\)为纳什均衡解, 则\(p_{G^*}=p_{data}, \: a.e.\), \(V(G^*, D^*)=m\).

proof:

\[V(G, D) = \int_{x} D(x) p_{data} (x)\mathrm{d}x + \int_z [m-D(G(z))]^+ p_G(z) \mathrm{d}z = \int_{x} D(x) p_{data} (x)\mathrm{d}x + \int_x [m-D(x)]^+ p_G(x) \mathrm{d}x.
\]

故需要考虑

\[\min \quad D(x) p_{data}(x) + [m-D(x)]^+ p_{G^*}(x),
\]

可得

\[D(x) = \left \{
\begin{array}{ll}
m, & p_{data} < p_{G^*} \\
0, & p_{data} > p_{G^*} \\
[0, m], & else.
\end{array} \right.
\]

所以

\[\begin{array}{ll}
V(G^*, D^*) & = \int_{p_{data} < p_{G^*}} m p_{data}(x) \mathrm{d}x + \int_{p_{data} > p_{G^*}} mp_{G^*}(x)\mathrm{d}x + \int_{p_{data}=p_{G^*}} G^*(x) p_{data}(x) \mathrm{d}x \\
& \le m + m \int_{p_{data} < p_{G^*}} m [p_{data}(x) - p_{G^*}(x)] \mathrm{d}x \le m.
\end{array}
\]

另一方面,

\[U(G,D^*) = \int_x D^*(x) p_{G}(x) \mathrm{d} x \ge \int_{x} D^* (x) p_{G^*}(x) \mathrm{d}x
\]

所以

\[V(G^*, D^*) \ge \int_x (D^*(x) + [m-D^*(x)]^+)p_{G^*}(x) \mathrm{d}x \ge m.
\]

所以\(V(G^*, D^*)=m\), 且\(p_{G^*}=p_{data}, \: a.e.\)

下一个问题是, 这个纳什均衡存在吗, 文中的定理二给出了这个答案, 不过需要一个额外的条件, 这里不多赘述.

文中最后采用的是下面的框架:

即能量函数\(D\)的选择为

\[D(x) = \|Dec(Enc(x)) - x\|.
\]

EBGAN的更多相关文章

  1. Generative Adversarial Nets[EBGAN]

    0. 背景 Junbo Zhao等人提出的"基于能量的GAN"网络,其将判别器视为一个能量函数而不需要明显的概率解释,该函数可以是一个可训练的损失函数.能量函数是将靠近真实数据流形 ...

  2. EB-GAN系(Energy-based GAN)

    学习总结于国立台湾大学 :李宏毅老师 EB-GAN: Energy-based Generative Adversarial Network MA-GAN:MAGAN: Margin Adaptati ...

  3. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  4. Generative Adversarial Nets[BEGAN]

    本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...

  5. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  6. AI人工智能顶级实战工程师 课程大纲

    课程名称    内容    阶段一.人工智能基础 — 高等数学必知必会     1.数据分析    "a. 常数eb. 导数c. 梯度d. Taylore. gini系数f. 信息熵与组合数 ...

  7. TensorFlow练习24: GANs-生成对抗网络 (生成明星脸)

    http://blog.topspeedsnail.com/archives/10977 从2D图片生成3D模型(3D-GAN) https://blog.csdn.net/u014365862/ar ...

  8. (转) GAN应用情况调研

    本文转自: https://mp.weixin.qq.com/s?__biz=MzA5MDMwMTIyNQ==&mid=2649290778&idx=1&sn=9816b862 ...

  9. GANS 资料

    https://blog.csdn.net/a312863063/article/details/83512870 目 录第一章 初步了解GANs 3 1. 生成模型与判别模型. 3 2. 对抗网络思 ...

随机推荐

  1. day17 阶段测验

    题目 1.找出/proc/meminfo文件中以s开头的行,至少用三种方式忽略大小写 有以下几种方法: [root@localhost ~]# grep -iE "^s" /pro ...

  2. C++一元多项式求导

    这个题难度不大但是坑有点多,要考虑的点有几个: 1.测试用例为x 0 这个直接输出 0 0即可. 2.注意空格的输出 3.测试点3我好几次都没过,最后参考了别的答案加以修改才通过. 测试点3没过的代码 ...

  3. Virtual Destructor

    Deleting a derived class object using a pointer to a base class that has a non-virtual destructor re ...

  4. 加密时java.security.InvalidKeyException: Illegal key size or default parameters解决办法

    需 Java几乎各种常用加密算法都能找到对应的实现.因为美国的出口限制,Sun通过权限文件(local_policy.jar.US_export_policy.jar)做了相应限制.因此存在一些问题: ...

  5. 二叉搜索树、平衡二叉树、红黑树、B树、B+树

    完全二叉树: 空树不是完全二叉树,叶子结点只能出现在最下层和次下层,且最下层的叶子结点集中在树的左部.如果遇到一个结点,左孩子不为空,右孩子为空:或者左右孩子都为空:则该节点之后的队列中的结点都为叶子 ...

  6. 银行业评分卡制作——IV、WOE

    参考链接:https://blog.csdn.net/kevin7658/article/details/50780391 1.IV的用途 IV的全称是Information Value,中文意思是信 ...

  7. pipeline option指令

    目录 一.简介 二.参数 buildDiscarder checkoutToSubdirectory disableConcurrentBuilds newContainerPerStage retr ...

  8. Jenkins插件维护

    目录 一.简介 二.插件安装 在线安装插件 上传安装插件 从其它jenkins复制插件 配置插件加速器 一.简介 除了在线安装,还可以官网插件下载地址中进行下载安装,如果访问缓慢可以用清华镜像站. 二 ...

  9. Nginx区分浏览器

    目录 一.简介 二.配置 一.简介 场景: 不同浏览器对网页的兼容性是不一样的,所以针对火狐和curl,返回不同内容 原理: 使用if对http_user_agent变量进行判断,这个变量会显示访问时 ...

  10. python内置模块(一)

    re模块 基本操作方法 1.使用findall方法可以根据正则表达式筛选所有符合的字符.基本句式为: re.findall('正则表达式',待匹配的字符) 结果为一个列表,没有结果为空列表. 2.使用 ...