题目描述

Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。

他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。

注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。

请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.

输入输出格式

输入格式:

第一行 N,表示树中结点的数目。

第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。

接下来k个数,分别是每条边的另一个结点标号r1,r2,…,rk。

对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。

输出格式:

输出文件仅包含一个数,为所求的最少的士兵数目。

例如,对于如下图所示的树:

0

1 2 3

答案为1(只要一个士兵在结点1上)。

输入输出样例

输入样例#1: 复制

4
0 1 1
1 2 2 3
2 0
3 0

输出样例#1: 复制

1

思路

最小点覆盖

  • 最小点覆盖:对于图G = (V, E) 来说,最小点覆盖指的是从 V 中取尽量少的点组成一个集合, 使得 E 中所有边都与取出来的点相连.也就是说设 V’ 是图 G 的一个顶点覆盖,则对于图中任意一条边(u, v), 要么 u 属于集合 V’, 要么 v 属于集合 V’. 在集合 V’ 中除去任何元素后 V’ 不再是顶点覆盖, 则 V’ 是极小点覆盖. 称 G 的所有顶点覆盖中顶点个数最小的覆盖为最小点覆盖.

  • 方法:按照反方向的深度优先遍历序列来进行贪心.每检查一个结点,如果当前点和当前点的父节点都不属于顶点覆盖集合,则将父节点加入到顶点覆盖集合,并标记当前节点和其父节点都被覆盖.注意此贪心策略不适用于根节点,所以要把根节点排除在外.

code

 1 #include<cmath>
2 #include<cstdio>
3 #include<string>
4 #include<cstring>
5 #include<iostream>
6 #include<algorithm>
7 #define re register int
8 using namespace std;
9 inline int read(){
10 int x=0,w=1;
11 char ch=getchar();
12 while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
13 if(ch=='-') w=-1,ch=getchar();
14 while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
15 return x*w;
16 }
17 const int N=1505;
18 int fa[N],ans,tot,n;
19 int b[N],node[N];
20 int head[N],tail[2*N],nxt[2*N];
21 void add(int x,int y) {
22 tot++;
23 nxt[tot]=head[x];
24 head[x]=tot;
25 tail[tot]=y;
26 }
27 void dfs(int k) {
28 node[++tot]=k;
29 for(int i=head[k];i;i=nxt[i]) dfs(tail[i]);
30 }
31
32 int main() {
33 freopen("p2016.in","r",stdin);
34 n=read();
35 for(int i=1;i<=n;i++) {
36 int k,x;
37 x=read();
38 x++;
39 k=read();
40 for(int j=1;j<=k;j++){
41 int y;
42 y=read();
43 y++;
44 add(x,y);
45 fa[y]=x;
46 }
47 }
48 tot=0;
49 dfs(1);
50 for(int i=n;i>=2;i--) if(!b[node[i]]&&!b[fa[node[i]]]) b[fa[node[i]]]=true;
51 for(int i=1;i<=n;i++) if(b[i]) ans++;
52 printf("%d\n",ans);
53 return 0;
54 }

c++

【题解】Luogu p2016 战略游戏 (最小点覆盖)的更多相关文章

  1. Luogu P2016 战略游戏(树形DP)

    题解 设\(f[u][0/1/2]\)表示当前节点\(u\),放或不放(\(0/1\))时其子树满足题目要求的最小代价,\(2\)表示\(0/1\)中的最小值. 则有: \[ f[u][0]=\sum ...

  2. luogu P2016 战略游戏

    嘟嘟嘟 树形dp水题啦. 刚开始以为和[SDOI2006]保安站岗这道题一样,然后交上去WA了. 仔细想想还是有区别的,一个是能看到相邻点,一个是能看到相邻边.对于第一个,可以(u, v)两个点都不放 ...

  3. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  4. P2016 战略游戏——树形DP大水题

    P2016 战略游戏 树形DP 入门题吧(现在怎么是蓝色标签搞不懂): 注意是看见每一条边而不是每一个点(因为这里错了好几次): #include<cstdio> #include< ...

  5. 洛谷 P2016 战略游戏

    题意简述简述 求一棵树的最小点覆盖 题解思路 树形DP dp[i][0]表示第i个点覆盖以i为根的子树的最小值,且第i个点不放士兵 dp[i][1]表示第i个点覆盖以i为根的子树的最小值,且第i个点放 ...

  6. 洛谷P2016战略游戏

    传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...

  7. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  8. P2016 战略游戏 (树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  9. 【洛谷P2016战略游戏】

    树形dp的经典例题 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的 ...

随机推荐

  1. 浅谈持续集成(CI)、持续交付(CD)、持续部署(CD)

    CI/CD是实现敏捷和Devops理念的一种方法,具体而言,CI/CD 可让持续自动化和持续监控贯穿于应用的 整个生命周期(从集成和测试阶段,到交付和部署).这些关联的事务通常被统称为"CI ...

  2. js 实现 bind 的这五层,你在第几层?

    最近在帮朋友复习 JS 相关的基础知识,遇到不会的问题,她就会来问我. 这不是很简单?三下五除二,分分钟解决. function bind(fn, obj, ...arr) { return fn.a ...

  3. Django(3)pycharm创建项目

    创建项目 我们创建django项目有两种方式,命令行方式和使用pycharm工具创建,本文就介绍常用的pycharm工具创建   首先点击django,输入项目的名称,选择创建好的虚拟环境,最后点击c ...

  4. 推荐一些学习MySQL的资源

    前言: 在日常工作与学习中,无论是开发.运维.还是测试,对于数据库的学习是不可避免的,同时也是日常工作的必备技术之一.在互联网公司,开源数据库用得比较多的当属MySQL了,相信各位小伙伴关注我的原因也 ...

  5. 游戏视野系统算法 (FOV using recursive shadowcasting)

    原理 http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting python代码实现 http://www ...

  6. Kibana常用语法

    GET brand201811_v2/_search 方法一:查询数据源,及相关url的文章 { "query": { "bool": { "must ...

  7. MegaRAID BIOS设置阵列

    MegaRAID BIOS设置阵列 1.在初始界面可以看到physical View的界面,或者在左侧的菜单栏中点击选中即可,可以看到物理磁盘. 2.点击上一步的配置向导可以进入到配置向导界面 3.选 ...

  8. zabbix监控之自定义监控

    自定义监控node1数据库状态,并设置报警 编辑agent客户端的userparameter_mysql.conf 文件,最后一行添加自定义监控内容 [root@node1 ~]# cd /etc/z ...

  9. jmeter中beanshell postprocessor结合fastjson库提取不确定个数的json参数

    在项目实践中,遇到了这样一个问题.用jmeter作http接口测试,需要的接口参数个数是不确定的.也就是说,在每次测试中,根据情况不同,可能页面中的列表中所含的参数个数是不确定的,那么要提取的参数个数 ...

  10. 云计算OpenStack共享组件---Memcache缓存系统(3)

    一.缓存系统 1.静态web页面: (1)在静态Web程序中,客户端使用Web浏览器(IE.FireFox等)经过网络(Network)连接到服务器上,使用HTTP协议发起一个请求(Request), ...