题解 \(by\;zj\varphi\)

观察可发现一个点向它的子树走能到的白点,黑点数是一个斐波那契数列。

对于白色点对,可以分成两种情况:

  1. 两个白点的 \(lca\) 是其中一个白点

  2. 两个白点的 \(lca\) 是一个黑点

注意,两个白点的 \(lca\) 不可能是非两个白点之中的白点。

分开计算即可

Code:
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x,char t) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar(t);
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar(t);
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=5e3+7,MOD=123456789;
int h[N],f[N],g[N],n;
ll ans;
template<typename T>inline void MD(T &x) {x=x>=MOD?x-MOD:x;}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nanfeng.out","w",stdout);
read(n);
f[0]=g[1]=h[1]=1;
for (ri i(2);i<=n;p(i)) {
f[i]=f[i-1]+f[i-2],MD(f[i]);
g[i]=g[i-1]+g[i-2],MD(g[i]);
h[i]=h[i-1]+g[i],MD(h[i]);
}
int l(n<<1);--n;
for (ri i(1);i<=l;p(i)) {
register ll tmp(0);
for (ri j(0);j<=n-i;p(j)) tmp+=f[j],MD(tmp);
ans=tmp*f[i]%MOD;
ri p=cmin(i,n),q=cmax(i-n,1);
for (ri j(q);j<p;p(j))
ans=(ans+(ll)f[j]*f[i-j-1]%MOD*h[cmin(n-j,n-i+j)]%MOD),MD(ans);
print(ans,' ');
}
return 0;
}
}
int main() {return nanfeng::main();}

NOIP 模拟 $26\; \rm 幻魔皇$的更多相关文章

  1. NOIP 模拟 $26\; \rm 神炎皇$

    题解 \(by\;zj\varphi\) 一道 \(\varphi()\) 的题. 对于一个合法的数对,设它为 \((a*m,b*m)\) 则 \(((a+b)*m)|a*b*m^2\),所以 \(( ...

  2. NOIP 模拟 $26\; \rm 降雷皇$

    题解 \(by\;zj\varphi\) 用树状数组优化一下求最长上升子序列即可. 至于第二问,在求出答案后开 \(n\) 棵线段树,每颗维护当前最长上升子序列长度的方案数. Code #includ ...

  3. noip模拟26[肾炎黄·酱累黄·换莫黄]

    \(noip模拟26\;solutions\) 这个题我做的确实是得心应手,为啥呢,因为前两次考试太难了 T1非常的简单,只不过我忘记了一个定理, T2就是一个小小的线段树,虽然吧我曾经说过我再也不写 ...

  4. NOIP模拟26「神炎皇·降雷皇·幻魔皇」

    T1:神炎皇   又是数学题,气死,根本不会.   首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...

  5. NOIP模拟 1

    NOIP模拟1,到现在时间已经比较长了.. 那天是6.14,今天7.18了 //然鹅我看着最前边缺失的模拟1,还是终于忍不住把它补上,为了保持顺序2345重新发布了一遍.. #   用  户  名   ...

  6. 2021.5.22 noip模拟1

    这场考试考得很烂 连暴力都没打好 只拿了25分,,,,,,,,好好总结 T1序列 A. 序列 题目描述 HZ每周一都要举行升旗仪式,国旗班会站成一整列整齐的向前行进. 郭神作为摄像师想要选取其中一段照 ...

  7. [考试总结]noip模拟26

    首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...

  8. 2021.7.28考试总结[NOIP模拟26]

    罕见的又改完了. T1 神炎皇 吸取昨天三个出规律的教训,开场打完T2 20pts直接大力打表1h. 但怎么说呢,我不懂欧拉函数.(其实exgcd都忘了 于是只看出最大平方因子,不得不线性筛,爆拿60 ...

  9. NOIP模拟

    1.要选一个{1,2,...n}的子集使得假如a和b在所选集合里且(a+b)/2∈{1,2,...n}那么(a+b)/2也在所选集合里 f[i]=2*f[i-1]-f[i-2]+g[i] g[n]:选 ...

随机推荐

  1. 使用xcode实现IM的那些坑

    想用xcode基于XMPP实现即时通讯,mac必须安装openfire(xmpp服务器),mysql(本地数据库,用于配置openfire),JDK(打开openfire必须本地具备java环境),x ...

  2. 续PA协商过程

    续PA协商过程 当sw3的接口恢复之后会发生2中情况. ①sw3的G0/0/2口先发BPDU ②sw3的G0/0/3口先发BPDU sw3先发送BPDU sw3和sw1的交互过程: sw3的2口恢复后 ...

  3. C语言:常用数学函数

    #include <stdio.h> #include <math.h> #include <stdlib.h> #include <time.h> # ...

  4. c++中的静态成员

    引言 有时候需要类的一些成员与类本身相关联,而不是与类的每个对象相关联.比如类的所有对象都要共享的变量,这个时候我们就要用到类的静态成员. 声明类的静态成员 声明静态成员的方法是使用static关键字 ...

  5. [刘阳Java]_大型电商网站架构技术演化历程

    今年的双十一已经过去一段,作为技术小咖啡,我们先说一下大型电商网站的特点:高并发,大流量,高可用,海量数据.下面就说说大型网站的架构演化过程,它的技术架构是如何一步步的演化的 1. 早期的网站架构 初 ...

  6. 无需kubectl!快速使用Prometheus监控Etcd

    在本文中,我们将安装一个Etcd集群并使用Prometheus和Grafana配置监控,以上这些操作我们都通过Rancher进行. 我们将看到在不需要依赖的情况下充分利用Rancher的应用商店实现这 ...

  7. noip模拟23[联·赛·题]

    \(noip模拟23\;solutions\) 怎么说呢??这个考试考得是非常的惨烈,一共拿了70分,为啥呢 因为我第一题和第三题爆零了,然后第二题拿到了70分,还是贪心的分数 第一题和第二题我调了好 ...

  8. Python基础之控制台打印不同颜色字符串

    参考文章:https://www.cnblogs.com/daofaziran/p/9015284.html 打印各种颜色的文字,但是需要传入文字 print_color.py "" ...

  9. (Opencv4)二值化图像

    (Opencv4)二值化图像  ret, dst = cv2.threshold(src, thresh, maxval, type) threshold : 极限,临界值,阈值 ret: 一个数 s ...

  10. 小白的 Python 修炼手册:入门篇

    Life is short, you need Python.(人生苦短,我用 Python.) --Bruce Eckel 前言 听说现在是全民 Python 的时代,虽然不知道事实如何,但学会 P ...