Atcoder Grand Contest 034 F - RNG and XOR(FWT)
tsc 考试前 A 的题了,结果到现在才写这篇题解……为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会儿 OI 了((
u1s1 写这篇题解的时候我连题都快忘了。。。
首先设 \(b_i=\dfrac{A_i}{\sum\limits_{j=0}^{2^n-1}A_j}\),其次碰到这种期望类的题目我们考虑套路地设 \(p_i\) 表示异或得到 \(i\) 的概率,那么有 \(p_i=\sum\limits_{j=0}^{2^n-1}p_jb_{i\oplus j}+1\),\(p_0=0\)。这个状态定义是存在后效性的,而高斯消元 \(8^n\) 又显然会超时,因此考虑从这个转移式本身入手进行优化。注意到这个转移式长得有点像异或卷积,因此考虑用异或卷积的形式将这个式子写出来,即 \(p=p\times b+I\),其中 \(\forall i,I_i=1\),异常好理解。
不过事实上这个式子是有个 bug 的,\(p_0=0\),而将 \(p_0\) 带到右边去就不一定等于 \(0\) 了,也就是说左边实际上要加上一个常数 \(X\),即 \(p+X=p\times b+I(X\in\mathbb{R})\)(事实上很多生成函数的题也需要注意常数项的问题,比如说斐波那契数列,这里就不再赘述了)。怎么求这个 \(X\) 的值呢?这里又是一个套路,将左边每一项都变成它的系数和,相当于多项式里的令 \(x=1\),那么可以得到 \((\sum\limits_{i=0}^{2^n-1}p_i)+X=(\sum\limits_{i=0}^{2^n-1}p_i)\times (\sum\limits_{i=0}^{2^n-1}b_i)+(\sum\limits_{i=0}^{2^n-1}I_i)\),而显然 \(\sum\limits_{i=0}^{2^n-1}b_i=1\),故 \(X=\sum\limits_{i=0}^{2^n-1}I_i=2^n\),因此 \(p+2^n=p\times b+I\),简单移个项可得 \(2^n-I=p\times(b-1)\),故 \(p=\dfrac{2^n-I}{b-1}\),把上下两个幂级数 FWTxor 一下相除再 FWTxor 回去即可得到 \(p\)。
还有一个小问题,就是在求逆元的时候有可能会出现分母为 \(0\) 的情况。事实上,由于 \(A_i\le 1000\),因此从所有 \(b_i\) 中任意选出一些出来它们的分子分母都 \(<998244353\),记 \(F=\text{FWT}(b-1)\),那么必然有 \(F_i\le 0(i\ne 0)\),而 \(F_0=-1+\sum\limits_{i=0}^{2^n-1}b_i=0\),因此出错的只可能是 \(F_0\)。不过这个问题很好解决,我们已知 \(p_0=0\),而显然对于一个幂级数 \(F\) FWTxor 后得到的幂级数 \(G\),常数项上加上一个常数 \(C\) 对于 \(F\) 的作用效果就是每一项都加上 \(C\),因此我们只需输出 \(p_i-p_0\) 即可。
const int MAXP=1<<18;
const int MOD=998244353;
int qpow(int x,int e=MOD-2){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,a[MAXP+5],b[MAXP+5],c[MAXP+5];
void FWTxor(int *a,int len,int type){
for(int i=2;i<=len;i<<=1)
for(int j=0;j<len;j+=i)
for(int k=0;k<(i>>1);k++){
int X=a[j+k],Y=a[(i>>1)+j+k];
a[j+k]=1ll*(X+Y)*type%MOD;
a[(i>>1)+j+k]=1ll*(X-Y+MOD)*type%MOD;
}
}
int main(){
scanf("%d",&n);n=1<<n;int sum=0;
for(int i=0;i<n;i++) scanf("%d",&a[i]),sum+=a[i];sum=qpow(sum);
for(int i=0;i<n;i++) a[i]=1ll*a[i]*sum%MOD;a[0]=(a[0]-1+MOD)%MOD;
for(int i=0;i<n;i++) b[i]=MOD-1;b[0]=(b[0]+n)%MOD;
FWTxor(a,n,1);FWTxor(b,n,1);
for(int i=0;i<n;i++) c[i]=1ll*b[i]*qpow(a[i])%MOD;
FWTxor(c,n,MOD+1>>1);
for(int i=0;i<n;i++) printf("%d\n",(c[i]-c[0]+MOD)%MOD);
return 0;
}
Atcoder Grand Contest 034 F - RNG and XOR(FWT)的更多相关文章
- Atcoder Grand Contest 030 F - Permutation and Minimum(DP)
洛谷题面传送门 & Atcoder 题面传送门 12 天以前做的题了,到现在才补/yun 做了一晚上+一早上终于 AC 了,写篇题解纪念一下 首先考虑如果全是 \(-1\) 怎么处理.由于我 ...
- Atcoder Grand Contest 003 F - Fraction of Fractal(矩阵乘法)
Atcoder 题面传送门 & 洛谷题面传送门 Yet another AGC F,然鹅这次就没能自己想出来了-- 首先需注意到题目中有一个条件叫做"黑格子组成的连通块是四联通的&q ...
- Atcoder Grand Contest 016 F - Games on DAG(状压 dp)
洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...
- Atcoder Grand Contest 010 C - Cleaning 树贪心(伪)
C - Cleaning 题目连接: http://agc010.contest.atcoder.jp/tasks/agc010_c Description There is a tree with ...
- Atcoder Grand Contest 001 D - Arrays and Palindrome(构造)
Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法, ...
- Atcoder Grand Contest 024 E - Sequence Growing Hard(dp+思维)
题目传送门 典型的 Atcoder 风格的计数 dp. 题目可以转化为每次在序列中插入一个 \([1,k]\) 的数,共操作 \(n\) 次,满足后一个序列的字典序严格大于前一个序列,问有多少种操作序 ...
- Atcoder Grand Contest 008 E - Next or Nextnext(乱搞+找性质)
Atcoder 题面传送门 & 洛谷题面传送门 震惊,我竟然能独立切掉 AGC E 难度的思维题! hb:nb tea 一道 感觉此题就是找性质,找性质,再找性质( 首先看到排列有关的问题,我 ...
- AtCoder Grand Contest 002 F:Leftmost Ball
题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然 ...
- AtCoder Grand Contest 017 F - Zigzag
题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...
随机推荐
- python jinja2初见
吸取了长城杯的教训,学习python-web迫在眉睫. 正常难度的python_template_injection,由于现在没学面向对象,理解原理比较困难,所以先使用简单版复现:并附上正常版的常用p ...
- 【Spring】Spring重要类层次图
- 【c++ Prime 学习笔记】第15章 面向对象程序设计
15.1 OOP:概述 面向对象程序设计(object-oriented programming)的核心思想是:数据抽象.继承.动态绑定 使用数据抽象,可将类的接口与实现分离 使用继承,可定义相似的类 ...
- 【Linux命令063】Linux非常简单常用的入门命令
Linux常用命令 这是一篇我在公众号上发布的文章,还算较为受欢迎. 博客园这边荒废好长时间了,主要是最近一年经常撰写的文章都是Linux相关的入门文章. 不知道是否能通过博客园的首页审核. 1.cd ...
- OO面向对象第三次作业总结
面向对象第三次作业总结 一.JML基础梳理及工具链 注释结构 行注释://@annotation 块注释:/*@ annotation @*/ 两种注释都是放在被注释部分上面. 常见表达式 原子表达式 ...
- Vue el 使用el-checkbox-group复选框进行单选框操作
el-checkbox-group这个组件与其他复选框不一样,我当初也是半天不知道怎么操作 页面使用v-model绑定 size就是等比例缩小放大,v-ror循环应该看的懂.重要的是@chage到我们 ...
- elf文件--基于《ctf竞赛权威指南pwn篇》
1.ELF概念: ELF(Executable and Linkable Format),即"可执行可链接格式",最初由UNIX系统实验室作为应用程序二进制接口(Applicati ...
- 2021.9.13考试总结[NOIP模拟52]
T1 路径 考虑每一位的贡献,第$i$位每$2^i$个数会变一次,那么答案为$\sum_{i=1}^{log_2n} \frac{n}{2^i}$. $code:$ 1 #include<bit ...
- 21.7.31 test
\(NOIP\) 测试 好久没有这种感觉能阿克的冲动了!但还是挂了分 T1 WOJ2608(模拟,拓扑排序) 签到题,直接模拟,有点像拓扑排序. 要给点打标记不然可能被某次操作中弹出多次该点导致WA ...
- Python 模块feedparser安装使用
RSS(简易信息聚合) 简易信息聚合(也叫聚合内容)是一种RSS基于XML标准,在互联网上被广泛采用的内容包装和投递协议.RSS(Really Simple Syndication)是一种描述和同步网 ...