题面传送门

神仙虚树题。

首先考虑最 trival 的情况:\(m=n-1\),也就是一棵树的情况。这个我相信刚学树形 \(dp\) 的都能够秒掉罢(确信)。直接设 \(dp_{i,0/1}\) 在表示 \(i\) 的子树内选择,\(i\) 选/不选的方案数。转移就 \(dp_{u,0}=\prod\limits_{v\in son_u}(dp_{v,0}+dp_{v,1}),dp_{u,1}=\prod\limits_{v\in son_u}dp_{v,0}\) 即可。

接下来考虑有非树边的情况,首先我们一遍 DFS 找出所有非树边组成的集合 \(E_t\)(显然 \(|E_t|=m-n+1\))注意到 \(m\le n+10\),故 \(|E_t|\le 11\),我们考虑暴力枚举每条非树边的选择情况——共有 \((0,0),(0,1),(1,0)\) 三种情况,但实际上我们发现如果左端点不选,那右端点就没有限制了,因此我们只需枚举左端点的情况,我们维护一个 \(ban_{u,x}\) 表示点 \(u\) 选/不选是否不可行,那么状态转移方程需改为 \(dp_{u,0}=\prod\limits_{v\in son_u}(dp_{v,0}+dp_{v,1})\times(1-ban_{u,0}),dp_{u,1}=\prod\limits_{v\in son_u}dp_{v,0}\times(1-ban_{u,1})\)。这样复杂度是 \(n2^{|E_t|}\) 的,大约可以拿到 \(75\) 分的好成绩。

考虑进一步优化,注意到虽然状态数很多,但满足 \(ban_{u,0}=1\lor ban_{u,1}=1\) 的点并不多,最多只有 \(22\) 个,因此我们考虑对这些关键点建立虚树,但是由于在建立虚树的过程中我们将有的链缩成了边,因此我们就不能再像之前那样转移了,我们考虑对每条虚树上的边 \(e=(u,v)\)(\(u\) 是 \(v\) 的父亲)预处理一个系数 \(k_{e,0/1,0/1}\),表示 \(dp_{u,0}=\prod\limits_{e\in E_u}(dp_{v,0}\times k_{e,0,0}+dp_{v,1}\times k_{e,0,1}),dp_{u,1}=\prod\limits_{e\in E_u}(dp_{v,0}\times k_{e,1,0}+dp_{v,1}\times k_{e,1,1})\)(有点类似于矩阵乘法),其中 \(E_u\) 为以 \(u\) 为上端节点的虚链的集合,显然如果我们求出了 \(k_{e,0/1,0/1}\) 就可以直接在虚树上 \(dp\) 了,时间复杂度也就降到了 \(|E_t|\times 2^{|E_t|}\)。

于是现在我们的任务就是求出 \(k_{e,0/1,0/1}\),首先对于每个虚树边 \((u,v)\) 的对应链上的点 \(w\),\(w\) 子树内距离 \(w\) 最近的在虚树上的点是唯一的,这个点就是 \(v\),因此我们再建一个数组 \(dk_{w,0/1,0/1}\) 表示 \(dp_{w,0}=dp_{v,0}\times dk_{w,0,0}+dp_{v,1}\times dk_{w,0,1},dp_{w,1}=dp_{v,0}\times dk_{w,1,0}+dp_{v,1}\times dk_{w,1,1}\),显然对于关键点 \(u\),\(dp_{u,0,0}=dp_{u,1,1}=1,dp_{u,1,0}=dp_{u,0,1}=0\)。考虑怎样通过 \(w\) 子树的 \(dk\) 求出 \(dk_w\),显然对于 \(w\) 的所有儿子,有且只有一个在 \(u\to v\) 这条虚链上,我们假设这个点为 \(x\),那么对于其他的 \(w\) 的儿子 \(y\ne x\),\(dp_{y,0},dp_{y,1}\) 显然是定值,根据前面的状态转移方程是直接乘上即可,即 \(dk_{w,0,0/1}\) 乘上 \(dp_{y,0}+dp_{y,1}\),\(dk_{w,1,0/1}\) 乘上 \(dp_{y,0}\)。而对于 \(w\) 在关键链上的儿子,根据 \(dp_{x,0}=dp_{v,0}\times dk_{x,0,0}+dp_{v,1}\times dk_{x,0,1},dp_{x,1}=dp_{v,0}\times dk_{x,1,0}+dp_{v,1}\times dk_{x,1,1}\),可以得出 \(x\) 对 \(dp_{w,0}\) 的贡献是 \(dp_{x,0}+dp_{x,1}=dp_{v,0}\times(dk_{x,0,0}+dk_{x,1,0})+dp_{v,1}\times(dk_{x,0,1}+dk_{x,1,1})\),对 \(dp_{w,1}\) 的贡献是 \(dp_{v,0}\times dk_{x,0,0}+dp_{v,1}\times dk_{x,0,1}\),故我们需令 \(dk_{w,0,0}\leftarrow dk_{w,0,0}\times(dk_{x,0,0}+dk_{x,1,0}),dk_{w,1,0}\leftarrow dk_{w,1,0}\times dk_{x,0,0}\),这样即可求出 \(k_{e,0/1,0/1}\),具体见代码罢。

const int MAXN=1e5+10;
const int MAXK=11;
const int MOD=998244353;
int n,m,hd[MAXN+5],to[MAXN*2+5],nxt[MAXN*2+5],ec=1,ans=0;
bool ist[MAXN+5],onv[MAXN+5];
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
int dfn[MAXN+5],tim=0;pii et[MAXK+5];int ecnt=0;
void dfs1(int x,int f){
dfn[x]=++tim;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f) continue;
if(!dfn[y]) dfs1(y,x);
else{
onv[x]=onv[y]=1;ist[e>>1]=1;
if(dfn[x]<dfn[y]) et[++ecnt]=mp(x,y);
}
}
}
int cnt[MAXN+5];
void dfs2(int x,int f){
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||ist[e>>1]) continue;
dfs2(y,x);cnt[x]+=cnt[y];
} onv[x]|=(cnt[x]>=2);cnt[x]=!!(cnt[x]+onv[x]);
}
pii k[MAXN+5][2];int dp0[MAXN+5][2];
vector<pair<int,pair<pii,pii> > > g[MAXN+5];
pii operator +(pii lhs,pii rhs){return mp((lhs.fi+rhs.fi)%MOD,(lhs.se+rhs.se)%MOD);}
pii operator *(pii lhs,int rhs){return mp(1ll*lhs.fi*rhs%MOD,1ll*lhs.se*rhs%MOD);}
int dfs3(int x,int f){
dp0[x][0]=dp0[x][1]=1;int z=0;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];if(y==f||ist[e>>1]) continue;
int dw=dfs3(y,x);
if(!dw){
dp0[x][0]=1ll*dp0[x][0]*(dp0[y][0]+dp0[y][1])%MOD;
dp0[x][1]=1ll*dp0[x][1]*dp0[y][0]%MOD;
} else if(onv[x]) g[x].pb(mp(dw,mp(k[y][0]+k[y][1],k[y][0])));
else k[x][0]=k[y][0]+k[y][1],k[x][1]=k[y][0],z=dw;
} if(onv[x]) k[x][0]=mp(1,0),k[x][1]=mp(0,1),z=x;
else k[x][0]=k[x][0]*dp0[x][0],k[x][1]=k[x][1]*dp0[x][1];
// printf("%d %d %d %d %d\n",x,k[x][0].fi,k[x][0].se,k[x][1].fi,k[x][1].se);
// printf("%d %d\n",dp0[x][0],dp0[x][1]);
return z;
}
bool ban[MAXN+5][2];int dp[MAXN+5][2];
void dfs4(int x){
dp[x][0]=(!ban[x][0])*dp0[x][0];
dp[x][1]=(!ban[x][1])*dp0[x][1];
for(int i=0;i<g[x].size();i++){
int y=g[x][i].fi;dfs4(y);
pii p0=g[x][i].se.fi,p1=g[x][i].se.se;
dp[x][0]=1ll*dp[x][0]*((1ll*dp[y][0]*p0.fi+1ll*dp[y][1]*p0.se)%MOD)%MOD;
dp[x][1]=1ll*dp[x][1]*((1ll*dp[y][0]*p1.fi+1ll*dp[y][1]*p1.se)%MOD)%MOD;
} //printf("%d %d %d\n",x,dp[x][0],dp[x][1]);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,u,v;i<=m;i++) scanf("%d%d",&u,&v),adde(u,v),adde(v,u);
dfs1(1,0);dfs2(1,0);onv[1]=1;dfs3(1,0);
// for(int i=1;i<=n;i++) printf("%d%c",onv[i]," \n"[i==n]);
// for(int i=1;i<=ecnt;i++) printf("%d %d\n",et[i].fi,et[i].se);
for(int i=0;i<(1<<ecnt);i++){
for(int j=1;j<=ecnt;j++){
if(i>>(j-1)&1) ban[et[j].fi][0]=1,ban[et[j].se][1]=1;
else ban[et[j].fi][1]=1;
} dfs4(1);ans=(ans+dp[1][0])%MOD;ans=(ans+dp[1][1])%MOD;
for(int j=1;j<=ecnt;j++){
if(i>>(j-1)&1) ban[et[j].fi][0]=0,ban[et[j].se][1]=0;
else ban[et[j].fi][1]=0;
}
} printf("%d\n",ans);
return 0;
}

洛谷 P4426 - [HNOI/AHOI2018]毒瘤(虚树+dp)的更多相关文章

  1. 洛谷P2495 [SDOI2011]消耗战(虚树dp)

    P2495 [SDOI2011]消耗战 题目链接 题解: 虚树\(dp\)入门题吧.虚树的核心思想其实就是每次只保留关键点,因为关键点的dfs序的相对大小顺序和原来的树中结点dfs序的相对大小顺序都是 ...

  2. 洛谷P4425 [HNOI/AHOI2018]转盘(线段树)

    题意 题目链接 Sol 首先猜一个结论:对于每次询问,枚举一个起点然后不断等到某个点出现时才走到下一个点一定是最优的. 证明不会,考场上拍了3w组没错应该就是对的吧... 首先把数组倍长一下方便枚举起 ...

  3. 洛谷 P2495 [SDOI2011]消耗战(虚树,dp)

    题面 洛谷 题解 虚树+dp 关于虚树 了解一下 具体实现 inline void insert(int x) { if (top == 1) {s[++top] = x; return ;} int ...

  4. [BZOJ5287][HNOI2018]毒瘤(虚树DP)

    暴力枚举非树边取值做DP可得75. 注意到每次枚举出一个容斥状态的时候,都要做大量重复操作. 建立虚树,预处理出虚树上两点间的转移系数.也可动态DP解决. 树上倍增.动态DP.虚树DP似乎是这种问题的 ...

  5. [Bzoj5285][洛谷P4424][HNOI/AHOI2018]寻宝游戏(bitset)

    P4424 [HNOI/AHOI2018]寻宝游戏 某大学每年都会有一次Mystery Hunt的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生 ...

  6. 洛谷P4103 [HEOI2014]大工程(虚树 树形dp)

    题意 链接 Sol 虚树. 首先建出虚树,然后直接树形dp就行了. 最大最小值直接维护子树内到该节点的最大值,然后合并两棵子树的时候更新一下答案. 任意两点的路径和可以考虑每条边两边的贡献,\(d[x ...

  7. bzoj 3611(洛谷 4103) [Heoi2014]大工程——虚树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3611 https://www.luogu.org/problemnew/show/P4103 ...

  8. 洛谷P2495 [SDOI2011]消耗战(虚树)

    题面 传送门 题解 为啥一直莫名其妙\(90\)分啊--重构了一下代码才\(A\)掉-- 先考虑直接\(dp\)怎么做 树形\(dp\)的时候,记一下断开某个节点的最小值,就是从根节点到它的路径上最短 ...

  9. Luogu P4426 [HNOI/AHOI2018]毒瘤

    题目 神仙题. 首先我们可以把题意转化为图的独立集计数.显然这个东西是个NP-Hard的. 然后我们可以注意到\(m\le n+10\),也就是说最多有\(11\)条非树边. 我们现在先考虑一下,树上 ...

随机推荐

  1. 航胥:北航教务助手——Beta阶段发布声明

    下载地址在文章末尾! 这里是"航胥",一款更想要了解你的北航教务助手 Beta阶段,我们进化了! Beta阶段我们的新功能有: 课程评价功能 所有用户选过的课程都会在课程评价页面进 ...

  2. [no_code][Beta] 中期组内总结

    $( "#cnblogs_post_body" ).catalog() 目前scrum meeting beta阶段目前共7次.在alpha阶段我们博客发布时间比较匆忙,是扣分项, ...

  3. dice_game攻防世界进阶区

    dice_game XCTF 4th-QCTF-2018 前言,不得不说,虽然是个简单题但是还是要记录一下,来让自己记住这些东西. 考察的知识点是: 1.cdll_loadlibrary加载对应库使得 ...

  4. 2021.8.16考试总结[NOIP模拟41]

    T1 你相信引力吗 肯定是单调栈维护.但存在重复值,还是个环,不好搞. 发现取区间时不会越过最大值,因此以最大值为断点将环断为序列.在栈里维护当前栈中有多少个与当前元素相等的元素,小分类讨论一下. 最 ...

  5. picGo+gitee搭建Obsidian图床,实现高效写作

    1 picGo安装 [picgo下载链接](https://molunerfinn.com/PicGo/) 选择安装目录,可以选择安装在D:\Program Files 然后点击安装即可 2. git ...

  6. 利用Wireshark 解密HTTPS流量

    在我之前的一篇文章中已经介绍了一种解密HTTPS流量的一种方法,大致方法就是客户端手动信任中间人,然后中间人重新封包SSL流量. 文章地址: http://professor.blog.51cto.c ...

  7. 超过1W字深度剖析JVM常量池(全网最详细最有深度)

    面试题:String a = "ab"; String b = "a" + "b"; a == b 是否相等 面试考察点 考察目的: 考察对 ...

  8. 跟着老猫来搞GO,基础进阶

    回顾一下上一篇博客,主要是和大家分享了GO语言的基础语法,其中包含变量定义,基本类型,条件语句,循环语句.那本篇呢就开始和大家同步一下GO语言基础的进阶. 函数的定义 上次其实在很多的DEMO中已经写 ...

  9. 输入指令npx webpack-dev-server报错:Error: Cannot find module ‘webpack-cli/bin/config-yargs‘的解决方法

    输入指令npx webpack-dev-server报错:Error: Cannot find module 'webpack-cli/bin/config-yargs'的解决方法 输入指令:npx ...

  10. 第五周PTA笔记 后缀表达式+后缀表达式计算

    后缀表达式 所谓后缀表达式是指这样的一个表达式:式中不再引用括号,运算符号放在两个运算对象之后,所有计算按运算符号出现的顺序,严格地由左而右进行(不用考虑运算符的优先级). 如:中缀表达式 3(5–2 ...