P1758-[NOI2009]管道取珠【dp】
正题
题目链接:https://www.luogu.com.cn/problem/P1758
题目大意
给出一个大小为\(n\)和一个大小为\(m\)的栈,每次选择一个栈弹出栈顶然后记录这个字母,求所有弹出序列的弹出方案的二次方和。
\(1\leq n,m\leq 500\)
解题思路
二次方和可以看为取出方案相同的对数。
然后就是很简单的\(dp\)了,设\(f_{i,j,k}\)表示都取出了\(i\)个,在第一个栈里分开取了\(j/k\)个,然后滚动。
时间复杂度\(O(nmn^2)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510,P=1024523;
int n,m,f[N*2][N][N];
char s[N],t[N];
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",s+1);
scanf("%s",t+1);
f[0][0][0]=1;
for(int i=1;i<=n+m;i++)
for(int j=0;j<=min(n,i);j++)
for(int k=0;k<=min(n,i);k++){
f[i&1][j][k]=0;
if(s[j]==s[k]&&j&&k)(f[i&1][j][k]+=f[~i&1][j-1][k-1])%=P;
if(s[j]==t[i-k]&&j&&i-k)(f[i&1][j][k]+=f[~i&1][j-1][k])%=P;
if(t[i-j]==s[k]&&k&&i-j)(f[i&1][j][k]+=f[~i&1][j][k-1])%=P;
if(t[i-j]==t[i-k]&&i-j&&i-k)(f[i&1][j][k]+=f[~i&1][j][k])%=P;
}
printf("%d\n",f[(n+m)&1][n][n]);
return 0;
}
P1758-[NOI2009]管道取珠【dp】的更多相关文章
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- luogu P1758 [NOI2009]管道取珠
luogu 这个题中的平方有点东西,考虑他的组合意义,也就是做这个过程两次,如果两次得到的结果一样就给答案+1,所以可以考虑dp,设\(f_{i,j,k,l}\)表示第一个过程中上面取到的第\(i\) ...
- P1758 [NOI2009]管道取珠
考虑这个式子的意义. 不妨看做进行了两轮操作,这个式子显然等价于两次操作后得到的序列相同的方案数. 这个东西显然是可以dp的. 随便优化一下就成了O(n^3)
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- NOI2009 管道取珠 神仙DP
原题链接 原题让求的是\(\sum\limits a_i^2\),这个东西直接求非常难求.我们考虑转化一下问题. 首先把\(a_i^2\)拆成\((1+1+...+1)(1+1+...+1)\),两个 ...
- BZOJ 1566 管道取珠(DP)
求方案数的平方之和.这个看起来很难解决.如果转化为求方案数的有序对的个数.那么就相当于求A和B同时取,最后序列一样的种数. 令dp[i][j][k]表示A在上管道取了i个,下管道取了j个,B在上管道取 ...
随机推荐
- Mybatis框架及原理实例分析
摘要 本篇文章只是个人阅读mybatis源码总结的经验或者个人理解mybatis的基本轮廓,作为抛砖引玉的功能,希望对你有帮助,如果需要深入了解细节还需亲自去阅读源码. mybatis基本架构 myb ...
- ASP.NET Core教程:使用Supervisor做ASP.NET Core应用程序守护进程
一.前言 在上一篇文章中,我们讲解了如何在Linux服务器上面部署ASP.NET Core应用程序,并且使用Nginx作为反向代理.我们在Linux服务器上面,是通过ASP.NET Core自宿主的方 ...
- 【spring 注解驱动开发】Spring AOP原理
尚学堂spring 注解驱动开发学习笔记之 - AOP原理 AOP原理: 1.AOP原理-AOP功能实现 2.AOP原理-@EnableAspectJAutoProxy 3.AOP原理-Annotat ...
- npm压缩js文件
参考:https://blog.csdn.net/msy_msy/article/details/78261383 1.压缩单个js文件 cnpm install uglify-js -g 安装 1& ...
- 【面试题】挑战10个最难回答的Java面试题(附答案)
转自:https://mp.weixin.qq.com/s/Kd-2qkDfaokHU7d2nfsE6w 1.为什么等待和通知是在 Object 类而不是 Thread 中声明的? 一个棘手的 Jav ...
- SpringBoot数据访问之整合mybatis注解版
SpringBoot数据访问之整合mybatis注解版 mybatis注解版: 贴心链接:Github 在网页下方,找到快速开始文档 上述链接方便读者查找. 通过快速开始文档,搭建环境: 创建数据库: ...
- 记一次 .NET 某流媒体独角兽 API 句柄泄漏分析
一:背景 1. 讲故事 上上周有位朋友找到我,说他的程序CPU和句柄都在不断的增长,无回头趋势,查了好些天也没什么进展,特加wx寻求帮助,截图如下: 看的出来这位朋友也是非常郁闷,出问题还出两个,气人 ...
- 编写你的第一个Django应用
安装 Python 作为一个 Python Web 框架,Django 需要 Python.更多细节请参见 我应该使用哪个版本的 Python 来配合 Django?. Python 包含了一个名为 ...
- Heartbeat+HAProxy+MySQL半复制高可用架构
目录 一 基础环境 二 架构设计 三 安装MySQL 3.1 安装MySQL 3.2 初始化MySQL 四 配置MySQL半同步 4.1 加载插件 4.2 配置半同步复制 4.3 master创建账号 ...
- 搭建私服仓库:(一)Windows安装Nuxus
Nexus下载 官网.官网下载.百度云盘 提取码:su33 将nexus下载下来,以2.14.5的windows版本为例子(3.x暂时下载不下来,迅雷会员都不行) 下载后进行解压,得到以下目录: 其中 ...