Technology Document Guide of TensorRT
Technology Document Guide of TensorRT
本示例支持指南概述了GitHub和产品包中包含的所有受支持的TensorRT 7.2.1示例。TensorRT示例在推荐程序、机器翻译、字符识别、图像分类和对象检测等领域有特殊帮助。
有关TensorRT开发文档,请参阅TensorRT归档文件。
- 1. Introduction
下面的示例展示了如何在许多用例中使用TensorRT,同时突出显示接口的不同功能。
1.1. Getting Started With C++ Samples
You can find the C++ samples in the /usr/src/tensorrt/samples package directory as well as on GitHub. The following C++ samples are shipped with TensorRT.
- “Hello World” For TensorRT
- Building A Simple MNIST Network Layer By Layer
- Importing The TensorFlow Model And Running Inference
- “Hello World” For TensorRT From ONNX
- Building And Running GoogleNet In TensorRT
- Building An RNN Network Layer By Layer
- Performing Inference In INT8 Using Custom Calibration
- Performing Inference In INT8 Precision
- Adding A Custom Layer To Your Network In TensorRT
- Object Detection With Faster R-CNN
- Object Detection With A TensorFlow SSD Network
- Movie Recommendation Using Neural Collaborative Filter (NCF)
- Movie Recommendation Using MPS (Multi-Process Service)
- Object Detection With SSD
- “Hello World” For Multilayer Perceptron (MLP)
- Specifying I/O Formats Using The Reformat Free I/O APIs
- Adding A Custom Layer That Supports INT8 I/O To Your Network In TensorRT
- Digit Recognition With Dynamic Shapes In TensorRT
- Neural Machine Translation (NMT) Using A Sequence To Sequence (seq2seq) Model
- Object Detection And Instance Segmentation With A TensorFlow Mask R-CNN Network
- Object Detection With A TensorFlow Faster R-CNN Network
- Algorithm Selection API Usage Example Based On sampleMNIST In TensorRT1
Getting Started With C++ Samples
每个C++样本包括一个GitHub中的README.md文件,该文件提供有关示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Running C++ Samples on Linux
如果使用Debian文件安装TensorRT,在构建C++示例之前,首先复制/usr/src/tensorrt到新目录。如果使用tar文件安装了TensorRT,那么示例位于{TAR_EXTRACT_PATH}/samples中。要生成所有示例,然后运行其中一个示例,请使用以下命令:
$ cd <samples_dir>
$ make -j4
$ cd ../bin
$ ./<sample_bin>
Running C++ Samples on Windows
Windows上的所有C++样本都作为VisualStudio解决方案文件提供。若要生成示例,请打开其相应的VisualStudio解决方案文件并生成解决方案。输出可执行文件将在(ZIP_EXTRACT_PATH)\bin中生成。然后可以直接或通过visual studio运行可执行文件。
1.2. Getting Started With Python Samples
可以在/usr/src/tensorrt/samples/python包目录中找到Python示例。以下Python示例随TensorRT一起提供。
- Introduction To Importing Caffe, TensorFlow And ONNX Models Into TensorRT Using Python
- “Hello World” For TensorRT Using TensorFlow And Python
- “Hello World” For TensorRT Using PyTorch And Python
- Adding A Custom Layer To Your TensorFlow Network In TensorRT In Python
- Object Detection With The ONNX TensorRT Backend In Python
- Object Detection With SSD In Python
- INT8 Calibration In Python
- Refitting An Engine In Python
- TensorRT Inference Of ONNX Models With Custom Layers In Python
Getting Started With Python Samples
每个Python示例都包含README.md文件。请参阅
/usr/src/tensorrt/samples/python/<sample-name>/README.md文件获取有关示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Running Python Samples
要运行其中一个Python示例,该过程通常包括两个步骤:
- Install the sample requirements:
- python<x> -m pip install -r requirements.txt
where python<x> is either python2 or python3.
- Run the sample code with the data directory provided if the TensorRT sample data is not in the default location. For example:
python<x> sample.py [-d DATA_DIR]
For more information on running samples, see the README.md file included with the sample.
Technology Document Guide of TensorRT的更多相关文章
- Oracle E-Business Suite Maintenance Guide Release 12.2(Patching Procedures)
更多内容参考: http://docs.oracle.com/cd/E51111_01/current/acrobat/122ebsmt.zip Preparing for Patching For ...
- TensorRT 介绍
引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...
- Javascript 常用函数【1】
1:基础知识 1 创建脚本块 1: <script language=”JavaScript”> 2: JavaScript code goes here 3: </script&g ...
- vue+.netcore可支持业务代码扩展的开发框架 VOL.Vue 2.0版本发布
框架介绍 这是一个基于vue.element-ui.iview..netcore3.1 可支持前端.后台动态扩展业务代码快速开发框架. 框架内置定制开发的代码生成器,生成的代码不需要复制也不需要更改, ...
- 《Advanced Bash-scripting Guide》学习(十四):HERE Document和cat <<EOF
本文所选的例子来自于<Advanced Bash-scripting Gudie>一书,译者 杨春敏 黄毅 #here document cat <<EOF \z EOF ca ...
- The Practical Guide to Empathy Maps: 10-Minute User Personas
That’s where the empathy map comes in. When created correctly, empathy maps serve as the perfect lea ...
- SlickUpload Quick Start Guide
Quick Start Guide The SlickUpload quick start demonstrates how to install SlickUpload in a new or ex ...
- IMS Global Learning Tools Interoperability™ Implementation Guide
Final Version 1.1 Date Issued: 13 March 2012 Latest version: http://www.imsglobal ...
- P6 EPPM Installation and Configuration Guide 16 R1 April 2016
P6 EPPM Installation and Configuration Guide 16 R1 April 2016 Contents About Installing and ...
随机推荐
- 关于PHP动态的接收传递的GET,POST和COOKIE变量
0x01 我们知道 PHP 接收的变量最常用的是 GET,POST,COOKIE 这三个变量.GET变量是附在 url 后传输的,而 POST 变量是放在 http 包中传输的,COOKIE 则是浏览 ...
- 安装和简单使用apidoc
安装nodejs 参考链接 安装apidoc 参考链接 使用 https://www.bilibili.com/video/BV1MW411Q7g4 https://www.bilibili.com/ ...
- Mac TouchBar 自定义工具-MTMR
Github Install brew cask install mtmr 官网
- QFNU-ACM 2020.04.05个人赛补题
A.CodeForces-124A (简单数学题) #include<cstdio> #include<algorithm> #include<iostream> ...
- 如何借助CRM销售管理系统提升业绩?
与传统企业销售模式不同,现代企业在网络背书下,销售活动与网络密切相关.销售数据需要网络保存,销售渠道需要网络挖掘.在线的销售软件让销售活动起到了事半功倍的效果.CRM销售管理系统是企业必不可少的在线软 ...
- linux 详解useradd 命令基本用法
linux 详解useradd 命令基本用法 时间:2019-03-24 本文章向大家介绍linux 详解useradd 命令基本用法,主要包括linux 详解useradd 命令基本用法使用实例.应 ...
- cgic: CGI的C函数库-(转自COS)
下载回源码包以后,就3个文件:cgic.c 函数库capture.c 一个很简单的CGI例子,仅仅输出两行提示文字cgictest.c 一个演示读取form表单数据的CGI例子 首先在 ...
- 项目实践之工作流引擎基本文档!Activiti工作流框架中流程引擎API和服务详解
流程引擎的API和服务 流程引擎API(ProcessEngine API)是与Activiti打交道的最常用方式 Activiti从ProcessEngine开始.在ProcessEngine中,可 ...
- Java 将Excel转为SVG的方法
本文以Java示例展示如何将Excel文档转为SVG格式.通过本文中的方法,在将Excel转为SVG时,如果sheet工作表中手动设置了分页,则将每个分页的内容单独保存为一个svg文件,如果sheet ...
- 启动dubbo消费端过程提示No provider available for the service的问题定位与解决
文/朱季谦 某次在启动dubbo消费端时,发现无法从zookeeper注册中心获取到所依赖的消费者API,启动日志一直出现这样的异常提示 Failed to check the status of t ...