kafka-connect-hive sink实现要点小结
kafka-connect-hive sink插件实现了以ORC和Parquet两种方式向Hive表中写入数据。Connector定期从Kafka轮询数据并将其写入HDFS,来自每个Kafka主题的数据由提供的分区字段进行分区并划分为块,每个数据块都表示为一个HDFS文件,文件名由topic名称+分区编号+offset构成。如果配置中没有指定分区,则使用默认分区方式,每个数据块的大小由已写入HDFS的文件长度、写入HDFS的时间和未写入HDFS的记录数决定。
在阅读该插件的源码过程中,觉得有很多值得学习的地方,特总结如下以备后忘。
一、分区策略
该插件可以配置两种分区策略:
STRICT:要求必须已经创建了所有分区
DYNAMIC:根据PARTITIONBY指定的分区字段创建分区
STRICT方式
实现代码及注释如下:
package com.landoop.streamreactor.connect.hive.sink.partitioning
import com.landoop.streamreactor.connect.hive.{DatabaseName, Partition, TableName}
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.hadoop.hive.metastore.IMetaStoreClient
import scala.collection.JavaConverters._
import scala.util.control.NonFatal
import scala.util.{Failure, Success, Try}
/**
* A [[PartitionHandler]] that requires any partition
* to already exist in the metastore.
*
* 要求分区已经在metastore中存在
*/
object StrictPartitionHandler extends PartitionHandler {
override def path(partition: Partition,
db: DatabaseName,
tableName: TableName)
(client: IMetaStoreClient,
fs: FileSystem): Try[Path] = {
try {
// 获取Hive metastore中表的存储位置,成功则返回
val part = client.getPartition(db.value, tableName.value, partition.entries.map(_._2).toList.asJava)
Success(new Path(part.getSd.getLocation))
} catch { // 未找到表的存储位置,返回异常
case NonFatal(e) =>
Failure(new RuntimeException(s"Partition '${partition.entries.map(_._2).toList.mkString(",")}' does not exist and strict policy requires upfront creation", e))
}
}
}
DYNAMIC方式
实现代码及注释如下:
package com.landoop.streamreactor.connect.hive.sink.partitioning
import com.landoop.streamreactor.connect.hive.{DatabaseName, Partition, TableName}
import com.typesafe.scalalogging.slf4j.StrictLogging
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.hadoop.hive.metastore.IMetaStoreClient
import org.apache.hadoop.hive.metastore.api.{StorageDescriptor, Table}
import scala.collection.JavaConverters._
import scala.util.{Failure, Success, Try}
/**
* A [[PartitionHandler]] that creates partitions
* on the fly as required.
*
* The path of the partition is determined by the given
* [[PartitionPathPolicy]] parameter. By default this will
* be an implementation that uses the standard hive
* paths of key1=value1/key2=value2.
*/
class DynamicPartitionHandler(pathPolicy: PartitionPathPolicy = DefaultMetastorePartitionPathPolicy)
extends PartitionHandler with StrictLogging {
override def path(partition: Partition,
db: DatabaseName,
tableName: TableName)
(client: IMetaStoreClient,
fs: FileSystem): Try[Path] = {
def table: Table = client.getTable(db.value, tableName.value)
def create(path: Path, table: Table): Unit = {
logger.debug(s"New partition will be created at $path")
// 设置的表的存储位置信息
val sd = new StorageDescriptor(table.getSd)
sd.setLocation(path.toString)
val params = new java.util.HashMap[String, String]
// 获取分区key的值、分区创建时间
val values = partition.entries.map(_._2).toList.asJava
val ts = (System.currentTimeMillis / 1000).toInt
// 给表设置并创建新分区
val p = new org.apache.hadoop.hive.metastore.api.Partition(values, db.value, tableName.value, ts, 0, sd, params)
logger.debug(s"Updating hive metastore with partition $p")
client.add_partition(p)
logger.info(s"Partition has been created in metastore [$partition]")
}
// 获取分区信息
Try(client.getPartition(db.value, tableName.value, partition.entries.toList.map(_._2).asJava)) match {
case Success(p) => Try { // 成功则返回
new Path(p.getSd.getLocation)
}
case Failure(_) => Try { // 失败则根据分区路径创建策略生成分区路径并返回
val t = table
val tableLocation = new Path(t.getSd.getLocation)
val path = pathPolicy.path(tableLocation, partition)
create(path, t)
path
}
}
}
}
该方式会以标准的Hive分区路径来创建分区,也就是分区字段=分区字段值的方式。
二、文件命名和大小控制
Kafka轮询数据并将其写入HDFS,来自每个Kafka主题的数据由提供的分区字段进行分区并划分为块,每个数据块都表示为一个HDFS文件,这里涉及到两个细节:
如何给文件命名
如何文件分块,文件大小及数量如何控制
接下来逐一看一下相关代码实现,文件命名部分实现代码如下:
package com.landoop.streamreactor.connect.hive.sink.staging
import com.landoop.streamreactor.connect.hive.{Offset, Topic}
import scala.util.Try
trait FilenamePolicy {
val prefix: String
}
object DefaultFilenamePolicy extends FilenamePolicy {
val prefix = "streamreactor"
}
object CommittedFileName {
private val Regex = s"(.+)_(.+)_(\\d+)_(\\d+)_(\\d+)".r
def unapply(filename: String): Option[(String, Topic, Int, Offset, Offset)] = {
filename match {
case Regex(prefix, topic, partition, start, end) =>
// 返回主题名称、分区编号、起始offset和结束offset
Try((prefix, Topic(topic), partition.toInt, Offset(start.toLong), Offset(end.toLong))).toOption
case _ => None
}
}
}
从上面代码可以看出,文件名由topic名称+分区编号+offset构成。假设文件前缀是streamreactor,topic名称是hive_sink_orc,分布编号是0,当前最大的offset是1168,那么最终生成的文件名称就是streamreactor_hive_sink_orc_0_1168。
接下来看看文件的大小是如何控制的。文件的大小主要由sink插件的三个配置项决定,这些配置项信息如下:
WITH_FLUSH_INTERVAL:long类型,表示文件提交的时间间隔,单位是毫秒
WITH_FLUSH_SIZE:long类型,表示执行提交操作之前,已提交到HDFS的文件长度,单位是字节
WITH_FLUSH_COUNT:long类型,表示执行提交操作之前,未提交到HDFS的记录数,一条数据算一个记录
这些参数在CommitPolicy特质中被使用,该特质的信息及实现类如下:
package com.landoop.streamreactor.connect.hive.sink.staging
import com.landoop.streamreactor.connect.hive.TopicPartitionOffset
import com.typesafe.scalalogging.slf4j.StrictLogging
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.kafka.connect.data.Struct
import scala.concurrent.duration.FiniteDuration
/**
* The [[CommitPolicy]] is responsible for determining when
* a file should be flushed (closed on disk, and moved to be visible).
*
* Typical implementations will flush based on number of records,
* file size, or time since the file was opened.
*
* 负责决定文件何时被刷新(在磁盘上关闭,以及移动到可见),一般情况下基于记录数量、文件大小和文件被打开的时间来刷新
*/
trait CommitPolicy {
/**
* This method is invoked after a file has been written.
*
* If the output file should be committed at this time, then this
* method should return true, otherwise false.
*
* Once a commit has taken place, a new file will be opened
* for the next record.
*
* 该方法在文件被写入之后调用,在这时如果文件应该被提交,该方法返回true,否则返回false。一旦发生了提交,新文件将为下一个记录打开
*
* @param tpo the [[TopicPartitionOffset]] of the last record written 最后一次记录的TopicPartitionOffset
* @param path the path of the file that the struct was written to 文件写入的路径
* @param count the number www.jiahuayulpt.com of records written thus far to the file 到目前为止写入文件的记录数
*
*/
def shouldFlush(struct: Struct, tpo: TopicPartitionOffset, path: Path, count: Long)
(implicit fs: FileSystem): Boolean
}
/**
* Default implementation of [[CommitPolicy]] that will flush the
* output file under the following www.078886.cn/ circumstances:
* - file size reaches limit
* - time since file was created
* - number of files is reached
*
* CommitPolicy 的默认实现,将根据以下场景刷新输出文件:
* 文件大小达到限制
* 文件创建以来的时间
* 达到文件数量
*
* @param interval in millis 毫秒间隔
*/
case class DefaultCommitPolicy(fileSize: Option[Long],
interval: Option[FiniteDuration],
fileCount: Option[Long]) extends CommitPolicy with StrictLogging {
require(fileSize.isDefined || interval.isDefined || fileCount.isDefined)
override def shouldFlush(struct: Struct, tpo: TopicPartitionOffset, path: Path, count: Long)
(implicit fs: FileSystem): Boolean = {
// 返回文件状态
val stat = fs.getFileStatus(path)
val open_time = System.currentTimeMillis() - stat.getModificationTime // 计算文件打开时间
/**
* stat.getLen:文件长度,以字节为单位
* stat.getModificationTime:文件修改时间,以毫秒为单位
*/
fileSize.exists(_ <www.yongshiyule178.com= stat.getLen) || interval.exists(_.toMillis <= open_time) || fileCount.exists(_ <= count)
}
}
现在来分析一下DefaultCommitPolicy类的实现逻辑:
首先,返回HDFS上文件的状态,接着计算文件被打开的时间。最后使用exists函数来执行以下逻辑判断:
fileSize.exists(_ <= stat.getLen):已提交到HDFS的文件长度stat.getLen是否大于设置的文件长度阈值fileSize
interval.exists(_.toMillis <= open_time):文件打开时间open_time是否大于设置的文件打开时间阈值interval
fileCount.exists(_ <= count):未提交到HDFS的记录数count是否大于设置未提交到HDFS的记录数阈值fileCount
以上三个逻辑判断只要任何一个成立,就返回true,接着执行flush操作,将文件刷新到HDFS的对应目录中。这样就很好地控制了文件的大小以及数量,避免过多小文件的产生。
三、异常处理策略
异常处理不当的话,会直接影响服务的高可用,产生不可预估的损失。kafka-connect在处理数据读写的过程中产生的异常默认是直接抛出的,这类异常容易使负责读写的task停止服务,示例异常信息如下:
[2019-02-25 11:03:56,170] ERROR WorkerSinkTask{id=hive-sink-example-0} Task threw an uncaught and unrecoverable exception (org.apache.kafka.connect.runtime.WorkerTask:177)
MetaException(message:Could not dasheng178.com connect to meta store using any of the URIs provided. Most recent failure: org.apache.thrift.transport.TTransportException: java.net.ConnectException: Operation timed out (Connection timed out)
at org.apache.thrift.transport.TSocket.open(TSocket.java:226)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:477)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:285)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:210)
at com.landoop.streamreactor.connect.hive.sink.HiveSinkTask.start(HiveSinkTask.scala:56)
at org.apache.kafka.connect.runtime.WorkerSinkTask.initializeAndStart(WorkerSinkTask.java:302)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:191)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:175)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:219)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.ConnectException: Operation timed out (Connection timed out)
at java.net.PlainSocketImpl.socketConnect(Native Method)
at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
at java.net.Socket.connect(Socket.java:589)
at org.apache.thrift.transport.TSocket.open(TSocket.java:221)
... 13 more
)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:525)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:285)
at org.apache.hadoop.hive.www.tiaotiaoylzc.com/ metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:210)
at com.landoop.streamreactor.connect.hive.sink.HiveSinkTask.start(HiveSinkTask.scala:56)
at org.apache.kafka.connect.runtime.WorkerSinkTask.initializeAndStart(WorkerSinkTask.java:302)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:191)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:175)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:219)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
[2019-02-25 11:03:56,172] ERROR WorkerSinkTask{id=hive-sink-example-0} Task is being killed and will not recover until manually restarted (org.apache.kafka.connect.runtime.WorkerTask:178)
在以上异常信息可以看到,由于连接Hive metastore超时,因此相关的Task被杀死,需要我们手动重启。当然这只是kafka-connect在运行中发生的一个异常,对于这类容易使Task停止工作的异常,需要设置相关的异常处理策略,sink插件在实现中定义了三种异常处理策略,分别如下:
NOOP:表示在异常发生后,不处理异常,继续工作
THROW:表示在异常发生后,直接抛出异常,这样会使服务停止
RETRY:表示在异常发生后,进行重试,相应地,需要定义重试次数,来避免无限重试情况的发生
基于以上三种异常处理策略,sink插件相关的实现类如下:
/*
* Copyright 2017 Datamountaineer.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the www.mytxyl1.com License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.datamountaineer.streamreactor.connect.errors
import java.util.Date
import com.datamountaineer.streamreactor.connect.errors.ErrorPolicyEnum.ErrorPolicyEnum
import com.typesafe.scalalogging.slf4j.StrictLogging
import org.apache.kafka.connect.errors.RetriableException
/**
* Created by andrew@datamountaineer.com on 19/05/16.
* kafka-connect-common
*/
object ErrorPolicyEnum extends Enumeration {
type ErrorPolicyEnum = Value
val NOOP, THROW, RETRY =www.feifanyule.cn Value
}
case class ErrorTracker(retries: Int, maxRetries: Int, lastErrorMessage: String, lastErrorTimestamp: Date, policy: ErrorPolicy)
trait ErrorPolicy extends www.fengshen157.com/ StrictLogging {
def handle(error: Throwable, sink: Boolean = true, retryCount: Int = 0)
}
object ErrorPolicy extends StrictLogging {
def apply(policy: ErrorPolicyEnum): ErrorPolicy = {
policy match {
case ErrorPolicyEnum.NOOP => NoopErrorPolicy()
case ErrorPolicyEnum.THROW => ThrowErrorPolicy()
case ErrorPolicyEnum.RETRY => RetryErrorPolicy()
}
}
}
/**
* 不处理异常策略
*/
case class NoopErrorPolicy(www.yongshi123.cn) extends ErrorPolicy {
override def handle(error: Throwable, sink: Boolean = true, retryCount: Int = 0){
logger.warn(s"Error policy NOOP: ${error.getMessage}. Processing continuing.")
}
}
/**
* 异常抛出处理策略
*/
case class ThrowErrorPolicy() extends ErrorPolicy {
override def handle(error: Throwable, sink: Boolean = true, retryCount: Int = 0){
throw new RuntimeException(error)
}
}
/**
* 异常重试处理策略
*/
case class RetryErrorPolicy() extends ErrorPolicy {
override def handle(error: Throwable, sink: Boolean www.yigouyule2.cn/= true, retryCount: Int) = {
if (retryCount == 0) {
throw new RuntimeException(error)
}
else {
logger.warn(s"Error policy set to RETRY. Remaining attempts $retryCount")
throw new RetriableException(error)
}
}
}
四、总结
基于kafka-connect实现相关数据同步插件时,应该尽可能地利用Kafka的topic信息,并对异常进行适当地处理,这样才可以保证插件的可扩展、高可用。
kafka-connect-hive sink实现要点小结的更多相关文章
- Streaming data from Oracle using Oracle GoldenGate and Kafka Connect
This is a guest blog from Robin Moffatt. Robin Moffatt is Head of R&D (Europe) at Rittman Mead, ...
- Kafka connect快速构建数据ETL通道
摘要: 作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 业余时间调研了一下Kafka connect的配置和使用,记录一些自己的理解和心得,欢迎 ...
- kafka connect rest api
1. 获取 Connect Worker 信息curl -s http://127.0.0.1:8083/ | jq lenmom@M1701:~/workspace/software/kafka_2 ...
- Kafka Connect HDFS
概述 Kafka 的数据如何传输到HDFS?如果仔细思考,会发现这个问题并不简单. 不妨先想一下这两个问题? 1)为什么要将Kafka的数据传输到HDFS上? 2)为什么不直接写HDFS而要通过Kaf ...
- Build an ETL Pipeline With Kafka Connect via JDBC Connectors
This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...
- 使用kafka connect,将数据批量写到hdfs完整过程
版权声明:本文为博主原创文章,未经博主允许不得转载 本文是基于hadoop 2.7.1,以及kafka 0.11.0.0.kafka-connect是以单节点模式运行,即standalone. 首先, ...
- 基于Kafka Connect框架DataPipeline可以更好地解决哪些企业数据集成难题?
DataPipeline已经完成了很多优化和提升工作,可以很好地解决当前企业数据集成面临的很多核心难题. 1. 任务的独立性与全局性. 从Kafka设计之初,就遵从从源端到目的的解耦性.下游可以有很多 ...
- 基于Kafka Connect框架DataPipeline在实时数据集成上做了哪些提升?
在不断满足当前企业客户数据集成需求的同时,DataPipeline也基于Kafka Connect 框架做了很多非常重要的提升. 1. 系统架构层面. DataPipeline引入DataPipeli ...
- 以Kafka Connect作为实时数据集成平台的基础架构有什么优势?
Kafka Connect是一种用于在Kafka和其他系统之间可扩展的.可靠的流式传输数据的工具,可以更快捷和简单地将大量数据集合移入和移出Kafka的连接器.Kafka Connect为DataPi ...
随机推荐
- RobotFramework测试环境搭建记录
Robotframwork测试环境搭建记录 1.安装Python2.7(https://www.python.org/) 在环境变量path中加入“C:\Python27” 安装后的验证方法为在命令行 ...
- C++ 单例模式总结与剖析
目录 C++ 单例模式总结与剖析 一.什么是单例 二.C++单例的实现 2.1 基础要点 2.2 C++ 实现单例的几种方式 2.3 单例的模板 三.何时应该使用或者不使用单例 反对单例的理由 参考文 ...
- 关于MySql数据库主键及索引的区别
一.什么是索引?索引用来快速地寻找那些具有特定值的记录,所有MySQL索引都以B-树的形式保存.如果没有索引,执行查询时MySQL必须从第一个记录开始扫描整个表的所有记录,直至找到符合要求的记录.表里 ...
- bcd引导Ubuntu
下面步骤就是创建Windows的启动项了. 以管理员身份打开CMD, 然后输入 bcdedit /create /d "ubuntu" /application bootsecto ...
- VirtualBox共享文件夹 Windows 7 (宿主机) + Ubuntu 12.04
1 安装增强功能包1.1 运行Ubuntu并登陆,菜单“设备”->“安装增强功能包(Install Guest Additions)”ubun1.2 桌面上会多出一个光盘图标,光盘默认自动加载到 ...
- java 实现验证码功能
所需文件以及技术: · SecurityUtil.java (后面我会复制给大家) · 图像处理技术 · 向客户端输出io流 一,实现的原理,当视图页面加载的时候通过<img >元素的 ...
- Mysql Order By注入总结
何为order by 注入 本文讨论的内容指可控制的位置在order by子句后,如下order参数可控"select * from goods order by $_GET['order' ...
- 时间戳使用的bug,你见过么
博主本人前几天给公司项目里写了个禁言和解除禁言的功能,项目中涉及到对时间的处理,因为学得时候也没很注意,就按自己的思路去写了,运行起来发现了一个天大的bug,就是写的延后一年尽然,刚开始就执行了,而且 ...
- springboot通过http访问——修改访问的端口号
文章转载来于:https://blog.csdn.net/zknxx/article/details/53433592 有时候我们可能需要启动不止一个SpringBoot,而SpringBoot默认的 ...
- #1490 : Tree Restoration-(微软2017在线笔试)
输入n m km个数,表示每层的节点个数接下来m行是每层的节点,节点顺序是从左往右的k个叶子节点k*k个矩阵,表示叶子节点之间的距离 输出:每个节点的父亲节点编号,root节点是0 题解:1.很明显, ...