从这开始我们来进入做题环节!作为一个较为抽象的知识点,博弈论一定要结合题目才更显魅力。今天,我主要介绍一些经典的题目,重点是去理解模型的转化,sg函数的推理和证明。话不多说,现在开始!

                        Georgia and Bob
Time Limit: 1000MS   Memory Limit: 10000K
     

Description

Georgia and Bob decide to play a self-invented game. They draw a row of grids on paper, number the grids from left to right by 1, 2, 3, ..., and place N chessmen on different grids, as shown in the following figure for example: 
Georgia and Bob move the chessmen in turn. Every time a player will choose a chessman, and move it to the left without going over any other chessmen or across the left edge. The player can freely choose number of steps the chessman moves, with the constraint that the chessman must be moved at least ONE step and one grid can at most contains ONE single chessman. The player who cannot make a move loses the game. 
Georgia always plays first since "Lady first". Suppose that Georgia and Bob both do their best in the game, i.e., if one of them knows a way to win the game, he or she will be able to carry it out. 
Given the initial positions of the n chessmen, can you predict who will finally win the game? 

Input

The first line of the input contains a single integer T (1 <= T <= 20), the number of test cases. Then T cases follow. Each test case contains two lines. The first line consists of one integer N (1 <= N <= 1000), indicating the number of chessmen. The second line contains N different integers P1, P2 ... Pn (1 <= Pi <= 10000), which are the initial positions of the n chessmen.

Output

For each test case, prints a single line, "Georgia will win", if Georgia will win the game; "Bob will win", if Bob will win the game; otherwise 'Not sure'.

Sample Input

2
3
1 2 3
8
1 5 6 7 9 12 14 17

Sample Output

Bob will win

Georgia will win

大致题意是说给一个很长的棋盘,一些地方有棋子,每个格子只能放1个棋子。每次必须要向左移动1个棋子,但不能移除棋盘,也不能超过它左边的第一个棋子。求先手是否必胜。

题解:

(检查草稿箱突然发现自己有暑假的博客没发出来,尴尬......)

这道题上来硬想肯定什么都想不出来。

我们只能通过由浅入深的推理才能做出这道题。

首先我们考虑必败状态的定义:

对于某两个棋子,如果他们两个靠在了一起,那么它们对应的状态就是一个必败状态。

这一点很显然,如果两个棋子贴在一起,先手只能移动前面的棋子,而后手可以通过紧跟先手来继续使先手拿到必败状态。

那么这样,命题得证,这两个紧贴的石子就是一个必败状态了。

那么我们考虑它是从哪里转移而来的:两个棋子如果没有距离了,那么它肯定是从一开始有距离的游戏状态转移过来的.

那么我们可以得到一些式子:

sg(距离为1)=mex(sg(距离为0))=1,

sg(距离为2)=mex(sg(距离为0),sg(距离为1))=2,

sg(距离为3)=mex(sg(距离为0),sg(距离为1),sg(距离为2))=3.......

到这里,读者应该想到了什么了:这就是一个nim游戏的变种!

因此,我们把2个棋子看做1组,之间的空位数看做一堆石子,最后按照nim游戏计算即可。代码见下:

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=;
int a[N];
inline bool mt(const int &a,const int &b){return a<b;}
int main()
{
int t,n;scanf("%d",&t);
while(t--)
{
scanf("%d",&n);int ans=;
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
sort(a+,a+n+,mt);
for(int i=;i<=n;i++)
if( ((i&)&&(n&)) || (!(i&)&&!(n&)) )ans^=a[i]-a[i-]-;
if(!ans)printf("Bob will win\n");
else printf("Georgia will win\n");
} }

[POJ1704]Georgia and Bob 博弈论的更多相关文章

  1. POJ1704 Georgia and Bob 博弈论 尼姆博弈 阶梯博弈

    http://poj.org/problem?id=1704 我并不知道阶梯博弈是什么玩意儿,但是这道题的所有题解博客都写了这个标签,所以我也写了,百度了一下,大概是一种和这道题类似的能转换为尼姆博弈 ...

  2. [poj1704]Georgia and Bob_博弈论

    Georgia and Bob poj-1704 题目大意:题目链接 注释:略. 想法:我们从最后一个球开始,每两个凑成一对.如果有奇数个球,那就让第一个球和开始位置作为一对. 那么如果对手移动的是一 ...

  3. POJ1704 Georgia and Bob

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9771   Accepted: 3220 Description Georg ...

  4. POJ1704 Georgia and Bob (阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Subm ...

  5. POJ1704 Georgia and Bob(Nim博弈变形)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14312   Accepted: 4840 ...

  6. POJ1704 Georgia and Bob Nim游戏

    POJ1704 这道题可以转化为经典的Nim游戏来解决. Nim游戏是这样的 有n堆石子,每堆各有ai个. 两个人轮流在任意石子堆中取至少1个石子,不能再取的输. 解决方法如下, 对N堆石子求异或 为 ...

  7. POJ.1704.Georgia and Bob(博弈论 Nim)

    题目链接 \(Description\) 一个1~INF的坐标轴上有n个棋子,给定坐标Pi.棋子只能向左走,不能跨越棋子,且不能越界(<1).两人每次可以将任意一个可移动的棋子向左移动一个单位. ...

  8. POJ1704 Georgia and Bob 题解

    阶梯博弈的变形.不知道的话还是一道挺神的题. 将所有的棋子两两绑在一起,对于奇数个棋子的情况,将其与起点看作一组.于是便可以将一组棋子的中间格子数看作一推石子.对靠右棋子的操作是取石子,而对左棋子的操 ...

  9. 【POJ1704】Georgia and Bob(博弈论)

    [POJ1704]Georgia and Bob(博弈论) 题面 POJ Vjudge 题解 这种一列格子中移动棋子的问题一般可以看做成一个阶梯博弈. 将一个棋子向左移动时,它和前面棋子的距离变小,和 ...

随机推荐

  1. 通俗理解BFS和DFS,附基本模板

    1.BFS(宽度优先搜索):使用队列来保存未被检测的节点,按照宽度优先的顺序被访问和进出队列 打个比方:(1)类似于树的按层次遍历 (2)你的眼镜掉在了地上,你趴在地上,你总是先摸离你最近的地方,如果 ...

  2. Docker Zero Deployment and Secrets (二)

    一. 健康检测: (1)定义检测信息如下(案例,在Dockerfile中定义) FROM alpine:3.6 ... HEALTHCHECK --interval=30s \     --timeo ...

  3. 【机器学习】无监督学习Autoencoder和VAE

    众所周知,机器学习的训练数据之所以非常昂贵,是因为需要大量人工标注数据. autoencoder可以输入数据和输出数据维度相同,这样测试数据匹配时和训练数据的输出端直接匹配,从而实现无监督训练的效果. ...

  4. 实验三 敏捷开发与XP实践 实验报告 20135232王玥

    一.实验内容 1. XP基础 2. XP核心实践 3. 相关工具 二.实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2. ...

  5. YQCB冲刺周第四天

    上图站立会议 任务看板: 今天的任务:做登录身份的验证,区别普通用户和超级管理员 遇到的困难:中文乱码问题

  6. Percona XtraDB Cluster 5.7

    附加:相关在线文档https://www.percona.com/software/documentation 安装要求: 1.root权限2.保证开放3306.4444.4567.4568端口3.关 ...

  7. Task 6.4 冲刺Two之站立会议4

    今天对主界面部分的代码进行了完善,因为主界面有对于用户账号的设置.包括头像修改.增删好友.进入聊天界面等功能,包含的内容很多.我主要是负责跟聊天界面的连接以及账号设置的部分:遇到的问题有,因为这部分依 ...

  8. BNUOJ 52308 We don't wanna work! set模拟

    题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52308 We don't wanna work! Time Limit: 60000msM ...

  9. 【Coursera】经验风险最小化

    一.经验风险最小化 1.有限假设类情形 对于Chernoff bound 不等式,最直观的解释就是利用高斯分布的图象.而且这个结论和中心极限定律没有关系,当m为任意值时Chernoff bound均成 ...

  10. 【动态规划】POJ-3616

    一.题目 Description Bessie is such a hard-working cow. In fact, she is so focused on maximizing her pro ...