一、索引简介

MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度。

索引分单列索引(主键索引、唯一索引、普通索引)和组合索引。单列索引,即一个索引只包含单个列,一个表可以有多个单列索引,但这不是组合索引。组合索引,即一个索引包含多个列。

创建索引时,你需要确保该索引是应用在 SQL 查询语句的条件(一般作为 WHERE 子句的条件)。

实际上,索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录。

上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。

建立索引会占用磁盘空间的索引文件。

1、什么是索引?为什么要建立索引?

  索引用于快速找出在某个列中有一特定值的行,不使用索引,MySQL必须从第一条记录开始读完整个表,直到找出相关的行,表越大,查询数据所花费的时间就越多,如果表中查询的列有一个索引,MySQL能够快速到达一个位置去搜索数据文件,而不必查看所有数据,那么将会节省很大一部分时间。

例如:有一张person表,其中有2W条记录,记录着2W个人的信息。有一个Phone的字段记录每个人的电话号码,现在想要查询出电话号码为xxxx的人的信息。

   如果没有索引,那么将从表中第一条记录一条条往下遍历,直到找到该条信息为止。

   如果有了索引,那么会将该Phone字段,通过一定的方法进行存储,好让查询该字段上的信息时,能够快速找到对应的数据,而不必在遍历2W条数据了。

2、Mysql索引主要有两种结构:B+Tree索引和Hash索引

Hash索引

MySQL中,只有Memory(Memory表只存在内存中,断电会消失,适用于临时表)存储引擎显示支持Hash索引,是Memory表的默认索引类型,尽管Memory表也可以使用B+Tree索引。hsah索引把数据的索引以hash形式组织起来,因此当查找某一条记录的时候,速度非常快。当时因为是hash结构,每个键只对应一个值,而且是散列的方式分布。所以他并不支持范围查找和排序等功能。

Hash索引有以下一些限制:
(1)由于索引仅包含hash code和记录指针,所以,MySQL不能通过使用索引避免读取记录。但是访问内存中的记录是非常迅速的,不会对性造成太大的影响。
(2)不能使用hash索引排序。
(3)Hash索引不支持键的部分匹配,因为是通过整个索引值来计算hash值的。
(4)Hash索引只支持等值比较,例如使用=,IN( )和<=>。对于WHERE price>100并不能加速查询。

B+树索引

B+tree是mysql使用最频繁的一个索引数据结构,是Inodb和Myisam存储引擎模式的索引类型。相对Hash索引,B+树在查找单条记录的速度比不上Hash索引,但是因为更适合排序等操作,所以他更受用户的欢迎。毕竟不可能只对数据库进行单条记录的操作。

带顺序访问指针的B+Tree

B+Tree所有索引数据都在叶子结点上,并且增加了顺序访问指针,每个叶子节点都有指向相邻叶子节点的指针。
这样做是为了提高区间查询效率,例如查询key为从18到49的所有数据记录,当找到18后,只需顺着节点和指针顺序遍历就可以一次性访问到所有数据节点,极大提到了区间查询效率。

大大减少磁盘I/O读取

数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。

为了达到这个目的,在实际实现B- Tree还需要使用如下技巧:

每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。

B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。

我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示

  最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13......非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

Mysql常见索引有:主键索引、唯一索引、普通索引、全文索引、组合索引

PRIMARY KEY(主键索引)  ALTER TABLE `table_name` ADD PRIMARY KEY ( `col` )

UNIQUE(唯一索引)     ALTER TABLE `table_name` ADD UNIQUE (`col`)

INDEX(普通索引)     ALTER TABLE `table_name` ADD INDEX index_name (`col`)

FULLTEXT(全文索引)      ALTER TABLE `table_name` ADD FULLTEXT ( `col` )
组合索引   ALTER TABLE `table_name` ADD INDEX index_name (`col1`, `col2`, `col3` )

Mysql各种索引区别:
普通索引:最基本的索引,没有任何限制
唯一索引:与"普通索引"类似,不同的就是:索引列的值必须唯一,但允许有空值。
主键索引:它 是一种特殊的唯一索引,不允许有空值。 
全文索引:仅可用于 MyISAM 表,针对较大的数据,生成全文索引很耗时好空间。
组合索引:为了更多的提高mysql效率可建立组合索引,遵循”最左前缀“原则。创建复合索引时应该将最常用(频率)作限制条件的列放在最左边,依次递减。

组合索引最左字段用in是可以用到索引的,最好explain一下select。

1、普通索引

创建索引

这是最基本的索引,它没有任何限制。它有以下几种创建方式:

CREATE INDEX indexName ON mytable(username(length)); 

如果是CHAR,VARCHAR类型,length可以小于字段实际长度;如果是BLOB和TEXT类型,必须指定 length。

修改表结构(添加索引)

ALTER table tableName ADD INDEX indexName(columnName)

创建表的时候直接指定

CREATE TABLE mytable(  

ID INT NOT NULL,   

username ) NOT NULL,  

INDEX [indexName] (username(length))  

);  

删除索引的语法

DROP INDEX [indexName] ON mytable; 

2、唯一索引

它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值(可以重复)。如果是组合索引,则列值的组合必须唯一。它有以下几种创建方式:

创建索引

CREATE UNIQUE INDEX indexName ON mytable(username(length)) 

修改表结构

ALTER table mytable ADD UNIQUE [indexName] (username(length))

创建表的时候直接指定

CREATE TABLE mytable(  

ID INT NOT NULL,   

username ) NOT NULL,  

UNIQUE [indexName] (username(length))  

);  

3、主键索引

它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引:

) NOT NULL,   PRIMARY KEY(ID)   );

当然也可以用 ALTER 命令。记住:一个表只能有一个主键。

4、组合索引

为了形象地对比单列索引和组合索引,为表添加多个字段:

CREATE TABLE mytable(
ID INT NOT NULL,
username ) NOT NULL,
city ) NOT NULL,
age INT NOT NULL  ); 

为了进一步榨取MySQL的效率,就要考虑建立组合索引。就是将 name, city, age建到一个索引里:

),city,age);

建表时,usernname长度为 16,这里用 10。这是因为一般情况下名字的长度不会超过10,这样会加速索引查询速度,还会减少索引文件的大小,提高INSERT的更新速度。

如果分别在 usernname,city,age上建立单列索引,让该表有3个单列索引,查询时和上述的组合索引效率也会大不一样,远远低于我们的组合索引。虽然此时有了三个索引,但MySQL只能用到其中的那个它认为似乎是最有效率的单列索引。

MySQL组合索引“最左前缀”的结果。简单的理解就是只从最左面的开始组合。并不是只要包含这三列的查询都会用到该组合索引,下面的几个SQL就会用到这个组合索引:

SELECT * FROM mytable WHREE username="admin" AND city="郑州"  SELECT * FROM mytable WHREE username="admin"

而下面几个则不会用到:

 AND city="郑州"
SELECT * FROM mytable WHREE city="郑州"

解释最左前缀

  组合索引就是遵从了最左前缀,利用索引中最左边的列集来匹配行,这样的列集称为最左前缀,不明白没关系,举几个例子就明白了,例如,这里由id、name和age3个字段构成的索引,索引行中就按id/name/age的顺序存放,索引可以索引下面字段组合(id,name,age)、(id,name)或者(id)。如果要查询的字段不构成索引最左面的前缀,那么就不会是用索引,比如,age或者(name,age)组合就不会使用索引查询。

5、使用ALTER 命令添加和删除索引

有四种方式来添加数据表的索引:

  • ALTER TABLE tbl_name ADD PRIMARY KEY (column_list): 该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL。
  • ALTER TABLE tbl_name ADD UNIQUE index_name (column_list): 这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)。
  • ALTER TABLE tbl_name ADD INDEX index_name (column_list): 添加普通索引,索引值可出现多次。
  • ALTER TABLE tbl_name ADD FULLTEXT index_name (column_list):该语句指定了索引为 FULLTEXT ,用于全文索引。

以下实例为在表中添加索引。

mysql> ALTER TABLE testalter_tbl ADD INDEX (c);

你还可以在 ALTER 命令中使用 DROP 子句来删除索引。尝试以下实例删除索引:

mysql> ALTER TABLE testalter_tbl DROP INDEX c;

使用 ALTER 命令添加和删除主键

主键只能作用于一个列上,添加主键索引时,你需要确保该主键默认不为空(NOT NULL)。实例如下:

mysql> ALTER TABLE testalter_tbl MODIFY i INT NOT NULL;
mysql> ALTER TABLE testalter_tbl ADD PRIMARY KEY (i);

你也可以使用 ALTER 命令删除主键:

mysql> ALTER TABLE testalter_tbl DROP PRIMARY KEY;

删除主键时只需指定PRIMARY KEY,但在删除索引时,你必须知道索引名。

6、建立与使用索引的时机

到这里我们已经学会了建立索引,那么我们需要在什么情况下建立索引呢?一般来说,在WHERE和JOIN中出现的列需要建立索引,但也不完全如此,因为MySQL只对<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE才会使用索引。例如:

 AND m.city='郑州'

此时就需要对city和age建立索引,由于mytable表的userame也出现在了JOIN子句中,也有对它建立索引的必要。

刚才提到只有某些时候的LIKE才需建立索引。因为在以通配符%和_开头作查询时,MySQL不会使用索引。例如下句会使用索引:

SELECT * FROM mytable WHERE username like'admin%'

而下句就不会使用:

SELECT * FROM mytable WHEREt Name like'%admin'

因此,在使用LIKE时应注意以上的区别。

7、显示索引信息

你可以使用 SHOW INDEX 命令来列出表中的相关的索引信息。可以通过添加 \G 来格式化输出信息。

尝试以下实例:

mysql> SHOW INDEX FROM table_name; \G
........

挑重点讲,我们需要了解的就5个,用红颜色标记了的,如果想深入了解,可以去查查该方面的资料,我个人觉得,这些等以后实际工作中遇到了在做详细的了解把。

Table:创建索引的表

Non_unique:表示索引非唯一,1代表 非唯一索引, 0代表 唯一索引,意思就是该索引是不是唯一索引

Key_name:索引名称

Seq_in_index 表示该字段在索引中的位置,单列索引的话该值为1,组合索引为每个字段在索引定义中的顺序(这个只需要知道单列索引该值就为1,组合索引为别的)

Column_name:表示定义索引的列字段

Sub_part:表示索引的长度

Null:表示该字段是否能为空值

Index_type:表示索引类型

二、索引优化

1、导致SQL执行慢的原因:

1.硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

2.没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

3.数据过多(分库分表)

4.服务器调优及各个参数设置(调整my.cnf)

2、分析原因时,一定要找切入点:

1.先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。

2.Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。

3.Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。

4.找DBA或者运维对MySQL进行服务器的参数调优。

3、选择索引的数据类型

MySQL支持很多数据类型,选择合适的数据类型存储数据对性能有很大的影响。通常来说,可以遵循以下一些指导原则:

(1)越小的数据类型通常更好:越小的数据类型通常在磁盘、内存和CPU缓存中都需要更少的空间,处理起来更快。
(2)简单的数据类型更好:整型数据比起字符,处理开销更小,因为字符串的比较更复杂。在MySQL中,应该用内置的日期和时间数据类型,而不是用字符串来存储时间;以及用整型数据类型存储IP地址。
(3)尽量避免NULL:应该指定列为NOT NULL,除非你想存储NULL。在MySQL中,含有空值的列很难进行查询优化,因为它们使得索引、索引的统计信息以及比较运算更加复杂。你应该用0、一个特殊的值或者一个空串代替空值。

选择标识符
选择合适的标识符是非常重要的。选择时不仅应该考虑存储类型,而且应该考虑MySQL是怎样进行运算和比较的。一旦选定数据类型,应该保证所有相关的表都使用相同的数据类型。
(1)    整型:通常是作为标识符的最好选择,因为可以更快的处理,而且可以设置为AUTO_INCREMENT。

(2)    字符串:尽量避免使用字符串作为标识符,它们消耗更好的空间,处理起来也较慢。而且,通常来说,字符串都是随机的,所以它们在索引中的位置也是随机的,这会导致页面分裂、随机访问磁盘,聚簇索引分裂(对于使用聚簇索引的存储引擎)。

4、Explain分析

先来插入测试需要的数据:

)  ) )              DEFAULT NULL,
  PRIMARY KEY (`id`),  KEY `name_index` (`name`)
)ENGINE ););););););););););)  )           ) )          DEFAULT NULL,
  PRIMARY KEY (`id`),  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)ENGINE , , , , , , , , , 'p8', 'TE');

初体验,执行Explain的效果:

索引使用情况在possible_keys、key和key_len三列,接下来我们先从左到右依次讲解。

1.id

--id相同,执行顺序由上而下explain select u.*,o.* from user_info u,order_info o where u.id=o.user_id;

--id不同,值越大越先被执行explain select * from  user_info  where id=(select user_id from order_info where  product_name ='p8');

2.select_type

可以看id的执行实例,总共有以下几种类型:

  • SIMPLE: 表示此查询不包含 UNION 查询或子查询

  • PRIMARY: 表示此查询是最外层的查询

  • SUBQUERY: 子查询中的第一个 SELECT

  • UNION: 表示此查询是 UNION 的第二或随后的查询

  • DEPENDENT UNION: UNION 中的第二个或后面的查询语句, 取决于外面的查询

  • UNION RESULT, UNION 的结果

  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

  • DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3.table

table表示查询涉及的表或衍生的表:

id为1的<derived2>的表示id为2的u和o表衍生出来的。

4.type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。 通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。

type 常用的取值有:

  • system: 表中只有一条数据, 这个类型是特殊的 const 类型。

  • const: 针对主键或唯一索引的等值查询扫描,最多只返回一行数据。 const 查询速度非常快, 因为它仅仅读取一次即可。例如下面的这个查询,它使用了主键索引,因此 type 就是 const 类型的:explain select * from user_info where id = 2;

  • eq_ref: 此类型通常出现在多表的 join 查询,表示对于前表的每一个结果,都只能匹配到后表的一行结果。并且查询的比较操作通常是 =,查询效率较高。例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;

  • ref: 此类型通常出现在多表的 join 查询,针对于非唯一或非主键索引,或者是使用了 最左前缀 规则索引的查询。例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5

  • range: 表示使用索引范围查询,通过索引字段范围获取表中部分数据记录。这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;

  • index: 表示全索引扫描(full index scan),和 ALL 类型类似,只不过 ALL 类型是全表扫描,而 index 类型则仅仅扫描所有的索引, 而不扫描数据。index 类型通常出现在:所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据。当是这种情况时,Extra 字段 会显示 Using index。

  • ALL: 表示全表扫描,这个类型的查询是性能最差的查询之一。通常来说, 我们的查询不应该出现 ALL 类型的查询,因为这样的查询在数据量大的情况下,对数据库的性能是巨大的灾难。 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免。

通常来说, 不同的 type 类型的性能关系如下:
      ALL < index < range ~ index_merge < ref < eq_ref < const < system
      ALL 类型因为是全表扫描, 因此在相同的查询条件下,它是速度最慢的。而 index 类型的查询虽然不是全表扫描,但是它扫描了所有的索引,因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据,因此可以过滤部分或大部分数据,因此查询效率就比较高了。

5.possible_keys

它表示 mysql 在查询时,可能使用到的索引。 注意,即使有些索引在 possible_keys 中出现,但是并不表示此索引会真正地被 mysql 使用到。 mysql 在查询时具体使用了哪些索引,由 key 字段决定。

6.key

此字段是 mysql 在当前查询时所真正使用到的索引。比如请客吃饭,possible_keys是应到多少人,key是实到多少人。

当我们没有建立索引时:

explain select o.* from order_info o where  o.product_name= 'p1' and  o.productor='whh';create index idx_name_productor on order_info(productor);drop index idx_name_productor on order_info;

建立复合索引后再查询:

7.key_len

表示查询优化器使用了索引的字节数,这个字段可以评估组合索引是否完全被使用。

8.ref

这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref,注意区别。

9.rows

rows 也是一个重要的字段,mysql 查询优化器根据统计信息,估算 sql 要查找到结果集需要扫描读取的数据行数,这个值非常直观的显示 sql 效率好坏, 原则上 rows 越少越好。可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4。

10.extra

explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

  • using filesort :表示 mysql 需额外的排序操作,不能通过索引顺序达到排序效果。一般有 using filesort都建议优化去掉,因为这样的查询 cpu 资源消耗大。

  • using index:覆盖索引扫描,表示查询在索引树中就可查找所需数据,不用扫描表数据文件,往往说明性能不错。

  • using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高,建议优化。

  • using where :表名使用了where过滤。

三、高性能的索引策略

1、聚簇索引(Clustered Indexes)

聚簇索引保证关键字的值相近的元组存储的物理位置也相同(所以字符串类型不宜建立聚簇索引,特别是随机字符串,会使得系统进行大量的移动操作),且一个表只能有一个聚簇索引。因为由存储引擎实现索引,所以,并不是所有的引擎都支持聚簇索引。目前,只有solidDB和InnoDB支持。

聚簇索引的结构大致如下:

注:叶子页面包含完整的元组,而内节点页面仅包含索引的列(索引的列为整型)。一些DBMS允许用户指定聚簇索引,但是MySQL的存储引擎到目前为止都不支持。InnoDB对主键建立聚簇索引。如果你不指定主键,InnoDB会用一个具有唯一且非空值的索引来代替。如果不存在这样的索引,InnoDB会定义一个隐藏的主键,然后对其建立聚簇索引。一般来说,DBMS都会以聚簇索引的形式来存储实际的数据,它是其它二级索引的基础。

2、InnoDB和MyISAM的数据布局的比较

为了更加理解聚簇索引和非聚簇索引,或者primary索引和second索引(MyISAM不支持聚簇索引),来比较一下InnoDB和MyISAM的数据布局,对于如下表:

CREATE TABLE layout_test (

   col1 int NOT NULL,

   col2 int NOT NULL,

   PRIMARY KEY(col1),

   KEY(col2)

);

假设主键的值位于1---10,000之间,且按随机顺序插入,然后用OPTIMIZE TABLE进行优化。col2随机赋予1---100之间的值,所以会存在许多重复的值。
(1)    MyISAM的数据布局
其布局十分简单,MyISAM按照插入的顺序在磁盘上存储数据,如下:

注:左边为行号(row number),从0开始。因为元组的大小固定,所以MyISAM可以很容易的从表的开始位置找到某一字节的位置。
据些建立的primary key的索引结构大致如下:

注:MyISAM不支持聚簇索引,索引中每一个叶子节点仅仅包含行号(row number),且叶子节点按照col1的顺序存储。
来看看col2的索引结构:

实际上,在MyISAM中,primary key和其它索引没有什么区别。Primary key仅仅只是一个叫做PRIMARY的唯一,非空的索引而已。

(2)    InnoDB的数据布局
InnoDB按聚簇索引的形式存储数据,所以它的数据布局有着很大的不同。它存储表的结构大致如下:

注:聚簇索引中的每个叶子节点包含primary key的值,事务ID和回滚指针(rollback pointer)——用于事务和MVCC,和余下的列(如col2)。

相对于MyISAM,二级索引与聚簇索引有很大的不同。InnoDB的二级索引的叶子包含primary key的值,而不是行指针(row pointers),这减小了移动数据或者数据页面分裂时维护二级索引的开销,因为InnoDB不需要更新索引的行指针。

按primary key的顺序插入行(InnoDB)

  如果你用InnoDB,而且不需要特殊的聚簇索引,一个好的做法就是使用代理主键(surrogate key)——独立于你的应用中的数据。最简单的做法就是使用一个AUTO_INCREMENT的列,这会保证记录按照顺序插入,而且能提高使用primary key进行连接的查询的性能。应该尽量避免随机的聚簇主键,例如,字符串主键就是一个不好的选择,它使得插入操作变得随机。

3、覆盖索引(Covering Indexes)

如果索引包含满足查询的所有数据,就称为覆盖索引。覆盖索引是一种非常强大的工具,能大大提高查询性能。只需要读取索引而不用读取数据有以下一些优点:
(1)索引项通常比记录要小,所以MySQL访问更少的数据;
(2)索引都按值的大小顺序存储,相对于随机访问记录,需要更少的I/O;
(3)大多数据引擎能更好的缓存索引。比如MyISAM只缓存索引。
(4)覆盖索引对于InnoDB表尤其有用,因为InnoDB使用聚集索引组织数据,如果二级索引中包含查询所需的数据,就不再需要在聚集索引中查找了。
覆盖索引不能是任何索引,只有B-TREE索引存储相应的值。而且不同的存储引擎实现覆盖索引的方式都不同,并不是所有存储引擎都支持覆盖索引(Memory和Falcon就不支持)。
对于索引覆盖查询(index-covered query),使用EXPLAIN时,可以在Extra一列中看到“Using index”。例如,在sakila的inventory表中,有一个组合索引(store_id,film_id),对于只需要访问这两列的查询,MySQL就可以使用索引,如下:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G

. row ***************************

           id: 

 select_type: SIMPLE

        table: inventory

         type: index

possible_keys: NULL

          key: idx_store_id_film_id

      key_len: 

          ref: NULL

         rows: 

        Extra: Using index

 row in set (0.17 sec)

在大多数引擎中,只有当查询语句所访问的列是索引的一部分时,索引才会覆盖。但是,InnoDB不限于此,InnoDB的二级索引在叶子节点中存储了primary key的值。因此,sakila.actor表使用InnoDB,而且对于是last_name上有索引,所以,索引能覆盖那些访问actor_id的查询,如:

mysql> EXPLAIN SELECT actor_id, last_name

    -> FROM sakila.actor WHERE last_name = 'HOPPER'\G

. row ***************************

           id: 

 select_type: SIMPLE

        table: actor

         type: ref

possible_keys: idx_actor_last_name

          key: idx_actor_last_name

      key_len: 

          ref: const

         rows: 

        Extra: Using where; Using index

4、利用索引进行排序

MySQL中,有两种方式生成有序结果集:一是使用filesort,二是按索引顺序扫描。利用索引进行排序操作是非常快的,而且可以利用同一索引同时进行查找和排序操作。当索引的顺序与ORDER BY中的列顺序相同且所有的列是同一方向(全部升序或者全部降序)时,可以使用索引来排序。如果查询是连接多个表,仅当ORDER BY中的所有列都是第一个表的列时才会使用索引。其它情况都会使用filesort。

四、索引的缺点

上面都在说使用索引的好处,但过多的使用索引将会造成滥用。因此索引也会有它的缺点:

1.虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件。

2.建立索引会占用磁盘空间的索引文件。一般情况这个问题不太严重,但如果你在一个大表上创建了多种组合索引,索引文件的会膨胀很快。

索引只是提高效率的一个因素,如果你的MySQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询语句。

五、使用索引的注意事项

使用索引时,有以下一些技巧和注意事项:

1.索引不会包含有NULL值的列

只要列中包含有NULL值都将不会被包含在索引中,复合索引中只要有一列含有NULL值,那么这一列对于此复合索引就是无效的。所以我们在数据库设计时不要让字段的默认值为NULL。

2.使用短索引

对串列进行索引,如果可能应该指定一个前缀长度。例如,如果有一个CHAR(255)的列,如果在前10个或20个字符内,多数值是惟一的,那么就不要对整个列进行索引。短索引不仅可以提高查询速度而且可以节省磁盘空间和I/O操作。

3.索引列排序

MySQL查询只使用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引的。因此数据库默认排序可以符合要求的情况下不要使用排序操作;尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。

4.like语句操作

一般情况下不鼓励使用like操作,如果非使用不可,如何使用也是一个问题。like “%aaa%” 不会使用索引而like “aaa%”可以使用索引。

5.不要在列上进行运算

;

将在每个行上进行运算,这将导致索引失效而进行全表扫描,因此我们可以改成:

';

6.不使用NOT IN和<>操作。

参考文章:

https://www.cnblogs.com/wasayezi/p/7412153.html

https://www.cnblogs.com/shijianchuzhenzhi/p/6383117.html

https://blog.csdn.net/GV7lZB0y87u7C/article/details/79969293

https://www.cnblogs.com/doudouxiaoye/p/5831449.html

再谈MySql索引的更多相关文章

  1. 再谈mysql锁机制及原理—锁的诠释

    加锁是实现数据库并发控制的一个非常重要的技术.当事务在对某个数据对象进行操作前,先向系统发出请求,对其加锁.加锁后事务就对该数据对象有了一定的控制,在该事务释放锁之前,其他的事务不能对此数据对象进行更 ...

  2. 浅谈MySQL索引背后的数据结构及算法

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  3. 浅谈MySQL索引背后的数据结构及算法(转载)

    转自:http://blogread.cn/it/article/4088?f=wb1 摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储 ...

  4. 浅谈MySQL索引背后的数据结构及算法【转】

    摘要 本文以MySQL数据库为研究对象,讨论与数据库索引相关的一些话题.特别需要说明的是,MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BT ...

  5. 浅谈Mysql索引

    文章原创于公众号:程序猿周先森.本平台不定时更新,喜欢我的文章,欢迎关注我的微信公众号. 我们都知道,数据库索引可以帮助我们更加快速的找出符合的数据,但是如果不使用索引,Mysql则会从第一条开始查询 ...

  6. InnoDB还是MyISAM 再谈MySQL存储引擎的选择

    两种类型最主要的差别就是Innodb 支持事务处理与外键和行级锁.而MyISAM不支持.所以MyISAM往往就容易被人认为只适合在小项目中使用. 我作为使用MySQL的用户角度出发,Innodb和My ...

  7. 谈Mysql索引

    myisam和innodb的索引有什么区别? 两个索引都是B+树索引,但是myisam的表存储和索引存储是分开的,索引存储中存放的是表的地址.而innodb表存储本身就是一个B+树,它是用主键来做B+ ...

  8. 再谈PG索引-存储架构

    1.索引的基本架构 PG的索引是B+树,B+树是为磁盘或其他直接存取辅助设备而设计的一种平衡查找树,在B+树中,所有记录节点都是按键值的大小顺序存放在同一层的叶节点中,各叶节点指针进行连接: meta ...

  9. 再谈 Mysql解决中文乱码

    一是要把数据库服务器的字符集设置为 utf8. 数据库的字符集会跟服务器的字符集一起变化, 也会变成 utf8: 在/etc/my.cnf中, 的 [mysqld]中, 设置 character-se ...

随机推荐

  1. ORM框架学习之EF

    首先推荐一篇很好的EF文章翻译,可以系统的学习一遍. <Entity Framework 6 Recipes>中文翻译系列 EF使用体会 优点: 可以省去Ado.net复杂的管道连接代码. ...

  2. Java中的Union Types和Intersection Types

    前言 Union Type和Intersection Type都是将多个类型结合起来的一个等价的"类型",它们并非是实际存在的类型. Union Type Union type(联 ...

  3. WebGL实现sprite精灵效果的GUI控件

    threejs已经有了sprite插件,这就方便了three的用户,直接可以使用threejs的sprite插件来制作GUI模型.sprite插件是阿里的lasoy老师改造过的,这个很厉害,要学习一哈 ...

  4. halcon算子之tuple_gen_const,用于生成特定长度的元组并且初始化其元素

    原文地址:http://blog.sina.com.cn/s/blog_d38f8be50102wczk.html 函数原型: tuple_gen_const(: : Length, Const : ...

  5. shell中与运算 cut切分行 if while综合在一起的一个例子

    前言: 公司要统计 treasury库hive表磁盘空间,写了个脚本,如下: 查询hive仓库表占用hdfs文件大小: hadoop fs -du -h  /user/hive/warehouse/t ...

  6. Spring中的数据库事物管理

    Spring中的数据库事物管理 只要给方法加一个@Transactional注解就可以了 例如:

  7. MD5加密简单使用

    MD5加密简单使用规则 先写一个加密的工具类吧! public class MD5Util { public static String encoderPassword(String s) throw ...

  8. CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学

    CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学 The next time you switch on your computer, you ...

  9. Spring入门学习笔记(1)

    目录 Spring好处 依赖注入 面向面编程(AOP) Spring Framework Core Container Web Miscellaneous 编写第一个程序 IoC容器 Spring B ...

  10. 一种利用ADO连接池操作MySQL的解决方案(VC++)

    VC++连接MySQL数据库 常用的方式有三种:ADO.mysql++,mysql API ; 本文只讲述ADO的连接方式. 为什么要使用连接池? 对于简单的数据库应用,完全可以先创建一个常连接(此连 ...