过程

首先需要记录每个点到原点的距离,这个距离会在每一轮遍历的过程中刷新。每一个节点到原点的最短路径是其上一个节点(前驱节点)到原点的最短路径加上前驱节点到该节点的距离。以这个原则,经过N轮计算就能得到每一个节点的最短距离。

第一轮,可以计算出,2、3、4、5、6到原点1的距离分别为:[7, 9, -1, -1, 14]。-1表示无穷大。取其中最小的,为7,即可以确定1的最短路径为0,2为下一轮的前驱节点。同时确定2节点的最短路径为7,路线:1->2。

第二轮,取2节点为前驱节点,按照前驱节点的最短距离加上该节点与前驱节点的距离计算新的最短距离,可以得到3,4,5,6节点到原点的距离为:[17, 22, -1, -1],此时需要将这一轮得到的结果与上一轮的比较,3节点:17 > 9,最短路径仍然为9;4节点:22 < 无穷大,刷新4节点的最短路径为225节点:不变,仍然为无穷大6节点:14 < 无穷大,取14,不变。则可以得到本轮的最短距离为:[9, 22, -1, 14],取最短路径最小的节点,为3,作为下一轮的前驱节点。同时确定3节点的最短路径为9,路线:1->3。

第三轮,同上,以3为前驱节点,得到4,5,6的计算距离为:[20, -1, 11],按照取最短路径的原则,与上一轮的进行比较,刷新为:[20, –1, 11],选定6为下一轮的前驱节点。同时取定6的最短路径为11,路线:1->3->6。

第四轮,同上,以6为前驱节点,得到4和5的计算距离为[20, 20],与上一轮进行比较,刷新后为[20, 20],二者相等只剩下两个节点,并且二者想等,剩下的计算已经不需要了。则两个节点的最短路径都为20。整个计算结束。4的最短路径为20,路线:1->3->4。5的最短路径为20,路线:1->3->6->5。

如果二者不相等,则还需要进行第五轮,先确定二者中的一个的最短路径和路线,再取定剩下的。直到整个5次循环都完成。

伪代码

function Dijkstra(G, w, s)
for each vertex v in V[G] //初始化
d[v] := infinity //将各点的已知最短距离先设成无穷大
previous[v] := undefined // 各点的已知最短路径上的前趋都未知
d[s] := 0 // 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
S := empty set
Q := set of all vertices
while Q is not an empty set // Dijkstra算法主体
u := Extract_Min(Q)
S.append(u)
for each edge outgoing from u as (u,v)
if d[v] > d[u] + w(u,v) // 拓展边(u,v)。w(u,v)为从u到v的路径长度。
d[v] := d[u] + w(u,v) // 更新路径长度到更小的那个和值。
previous[v] := u // 记录前面顶点

Code

public class Dijkstra
{
public static final int M = -1; public static void main(String[] args)
{
int[][] map1 = {
{ 0, 7, 9, M, M, 14 },
{ 7, 0, 10, 15, M, M },
{ 9, 10, 0, 11, M, 2 },
{ M, 15, 11, 0, 6, M },
{ M, M, M, 6, 0, 9 },
{ 14, M, 2, M, 9, 0 } }; int orig = 0;
int[] shortPath = Dijsktra(map1, orig); if (shortPath == null)
{
return;
} for (int i = 0; i < shortPath.length; i++)
{
System.out.println("从" + (orig + 1) + "出发到" + (i + 1) + "的最短距离为:"
+ shortPath[i]);
}
} public static int[] Dijsktra(int[][] weight, int orig)
{
int n = weight.length; // 顶点个数 int[] shortest = new int[n]; // 存放从start到其他各点的最短路径
boolean[] visited = new boolean[n]; // 标记当前该顶点的最短路径是否已经求出,true表示已求出 // 初始化,第一个顶点求出
shortest[orig] = 0;
visited[orig] = true; for (int count = 0; count != n - 1; count++) // 要加入n-1个顶点
{
// 选出一个距离初始顶点最近的未标记顶点
int k = M;
int dmin = M;
for (int i = 0; i < n; i++)
{
if (!visited[i] && weight[orig][i] != M)
{
if (dmin == -1 || dmin > weight[orig][i])
{
dmin = weight[orig][i];
k = i;
}
}
} // 正确的图生成的矩阵不可能出现K == M的情况
if (k == M)
{
System.out.println("the input map matrix is wrong!");
return null;
} shortest[k] = dmin;
visited[k] = true; // 以k为中间点,修正从原点到未访问各点的距离
for (int i = 0; i < n; i++)
{
if (!visited[i] && weight[k][i] != M)
{
int callen = dmin + weight[k][i];
if (weight[orig][i] == M || weight[orig][i] > callen)
{
weight[orig][i] = callen;
}
}
}
} return shortest;
}
}

我是天王盖地虎的分割线

参考:http://codeway.co/dijkstra%E7%AE%97%E6%B3%95%E6%B1%82%E8%A7%A3%E6%9C%80%E7%9F%AD%E8%B7%AF%E5%BE%84%E5%88%86%E6%9E%90/

Dijkstra(迪杰斯特拉)算法求解最短路径的更多相关文章

  1. c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法

    c/c++ 图的最短路径 Dijkstra(迪杰斯特拉)算法 图的最短路径的概念: 一位旅客要从城市A到城市B,他希望选择一条途中中转次数最少的路线.假设途中每一站都需要换车,则这个问题反映到图上就是 ...

  2. 图解Dijkstra(迪杰斯特拉)算法+代码实现

    简介 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的 ...

  3. C++迪杰斯特拉算法求最短路径

    一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...

  4. (Dijkstra)迪杰斯特拉算法-最短路径算法

    迪杰斯特拉算法是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 算法思想:设G=(V,E)是一个带权有向图 ...

  5. 算法与数据结构(六) 迪杰斯特拉算法的最短路径(Swift版)

    上篇博客我们详细的介绍了两种经典的最小生成树的算法,本篇博客我们就来详细的讲一下最短路径的经典算法----迪杰斯特拉算法.首先我们先聊一下什么是最短路径,这个还是比较好理解的.比如我要从北京到济南,而 ...

  6. js迪杰斯特拉算法求最短路径

    1.后台生成矩阵 名词解释和下图参考:https://blog.csdn.net/csdnxcn/article/details/80057574 double[,] arr = new double ...

  7. 最短路径算法—Dijkstra(迪杰斯特拉)算法分析与实现(C/C++)

    Dijkstra算法 ———————————最后更新时间:2011.9.25———————————Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径. ...

  8. 图->最短路径->单源最短路径(迪杰斯特拉算法Dijkstra)

    文字描述 引言:如下图一个交通系统,从A城到B城,有些旅客可能关心途中中转次数最少的路线,有些旅客更关心的是节省交通费用,而对于司机,里程和速度则是更感兴趣的信息.上面这些问题,都可以转化为求图中,两 ...

  9. C# 迪杰斯特拉算法 Dijkstra

    什么也不想说,现在直接上封装的方法: using System; using System.Collections.Concurrent; using System.Collections.Gener ...

随机推荐

  1. [ 转载 ] Centos 安装mysql后启动失败 出现 ERROR 2002 (HY000): Can’t connect to local MySQL server through socket ‘/var/lib/mysql/mysql.sock’

    MySQL Daemon failed to start Mysql出问题一定要学会查看log https://blog.csdn.net/shuai825644975/article/details ...

  2. touchscreem

    <触摸屏种类> 常见 电阻式触摸屏 电容式触摸屏 不常见 红外线技术触摸屏 表面声波触摸屏 适量压力传感触摸屏 <原理分析> 电阻式触摸屏 如图所示,在屏幕的上下和左右加上一个 ...

  3. [POI2017]Sabotaż

    [POI2017]Sabotaż 题目大意: 一棵\(n(n\le5\times10^5)\)个结点的树,初始时有一个未知的黑点,其余全为白点.对于一个点,如果其子树中黑点所占比例超过\(x\),则这 ...

  4. MVC的Action上下文:ActionExecutingContext

    就上图来看,大家注意了吗,ActionExecutingContext对象一共有3处引用.下面我来一一解析: 调用base.OnActionExecuting(filterContext)这个后,才会 ...

  5. 使用socket.io+redis来实现基本的聊天室应用场景

    本文根据socket.io与Redis来实现基本的聊天室应用场景,主要表现于多个浏览器之间的信息同步和实时更新. 只是简单记录了一下, 更详细的内容可以参考后续的一篇补充文章: 使用node.js + ...

  6. 了解 WMI (Windows Management Instrumentation) Windows管理工具

    它的功能主要是:访问本地主机的一些信息和服务,可以管理远程计算机(当然你必须要拥有足够的权限),比如:重启,关机,关闭进程,创建进程等

  7. jrebel使用

    背景与愿景:开发环境下,tomcat对热布署的支持还不够全面,致使开发人员浪费大量时间在重起服务上.为了提高开发效率,决定引入Jrebel,它对热布署的支持相对比较全面.虽然Jrebel官方号称使用它 ...

  8. PostgreSQL SystemTap on Linux 转

    PostgreSQL 支持动态跟踪, 可以通过dtrace或者systemtap工具统计相关探针的信息. 安装systemtap yum install systemtap kernel-debugi ...

  9. clip-path 教程:使用 CSS 中的 clip-path 轻松实现多边形

    作为一个前端开发,一个主要的工作就是来实现设计师设计的UI界面.而在UI界面中,各种各样的形状元素应用则是随处可见,比如三角形: 以前碰到这种形状的时候,会使用各种黑科技的技巧,比如使用CSS中的bo ...

  10. ARCGIS将WGS84坐标投影到高斯平面

    将WGS84坐标投影到平面,一般採用的是UTM(通用横轴莫卡托投影).该方式多用于美国地区,而我国多用北京54和西安80高斯克吕格投影坐标.假如我们想把影像採用高斯克吕格投影到在平面上,而ARCGIS ...