bzoj 2150 最小路径覆盖
最小路径覆盖问题是:给定一个DAG,该DAG的一个路径覆盖是一个路径的集合,使得每个点属于且仅属于其中一条路径,问题就是求一个大小最小的路径集合。
做法是将每个点A拆成两个点A1,A2,如果A->B,那么连A1->B2求一个最大匹配。
一个结论是:最小路径数 = 点数 - 最大匹配
证明的大概思路是:
一个路径覆盖与一个边独立集(即一个匹配)一一对应。
一个路径覆盖的路径数 = 点数 - 匹配数 ( 因为 路径数+每条路径的边数和-1 = n个点的无向联通无环图的边数 , 匹配数等于每条路径的边数和 )
/**************************************************************
Problem: 2150
User: idy002
Language: C++
Result: Accepted
Time:52 ms
Memory:1652 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <vector>
#define N 55
#define S N*N*2
#define oo 0x3f3f3f3f
using namespace std; struct Edge {
int u, v, f;
Edge( int u, int v, int f ):u(u),v(v),f(f){}
}; int n, m, r, c, cnt;
char board[N][N];
int idx[][N][N], src, dst, idc;
int dx[], dy[]; vector<Edge> edge;
vector<int> g[S];
int dep[S], cur[S], qu[S], bg, ed; void makeid() {
idc = ;
src = ++idc;
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ )
for( int c=; c<; c++ )
idx[c][i][j] = ++idc;
dst = ++idc;
}
void adde( int u, int v, int f ) {
g[u].push_back( edge.size() );
edge.push_back( Edge(u,v,f) );
g[v].push_back( edge.size() );
edge.push_back( Edge(v,u,) );
}
void build() {
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ ) {
if( board[i][j]!='.' ) continue;
adde( src, idx[][i][j], );
adde( idx[][i][j], dst, );
}
for( int i=; i<=n; i++ )
for( int j=; j<=m; j++ ) {
if( board[i][j]!='.' ) continue;
int u = idx[][i][j];
for( int d=; d<; d++ ) {
int ni = i+dx[d];
int nj = j+dy[d];
if( <=ni&&ni<=n && <=nj&&nj<=m && board[i][j]=='.' ) {
int v = idx[][ni][nj];
adde( u, v, );
}
}
}
}
bool bfs() {
memset( dep, , sizeof(dep) );
qu[bg=ed=] = src;
dep[src] = ;
while( bg<=ed ) {
int u=qu[bg++];
for( int t=; t<g[u].size(); t++ ) {
Edge &e = edge[g[u][t]];
if( e.f && !dep[e.v] ) {
dep[e.v] = dep[e.u]+;
qu[++ed] = e.v;
}
}
}
return dep[dst];
}
int dfs( int u, int a ) {
if( u==dst || a== ) return a;
int remain=a, past=, na;
for( int &t=cur[u]; t<g[u].size(); t++ ) {
Edge &e=edge[g[u][t]];
Edge &ve=edge[g[u][t]^];
if( e.f && dep[e.v]==dep[e.u]+ && (na=dfs(e.v,min(remain,e.f))) ) {
remain -= na;
past += na;
e.f -= na;
ve.f += na;
if( !remain ) break;
}
}
return past;
}
int maxflow() {
int flow = ;
while( bfs() ) {
memset( cur, , sizeof(cur) );
flow += dfs(src,oo);
}
return flow;
}
int main() {
scanf( "%d%d%d%d", &n, &m, &r, &c );
dx[]=r, dy[]=c, dx[]=r, dy[]=-c;
dx[]=c, dy[]=r, dx[]=c, dy[]=-r;
for( int i=; i<=n; i++ ) {
scanf( "%s", board[i]+ );
for( int j=; board[i][j]; j++ )
if( board[i][j]=='.' ) cnt++;
}
makeid();
build();
printf( "%d\n", cnt-maxflow() );
}
bzoj 2150 最小路径覆盖的更多相关文章
- BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...
- bzoj 2044 三维导弹拦截——DAG最小路径覆盖(二分图)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2044 还以为是CDQ.发现自己不会三维以上的…… 第一问可以n^2.然后是求最长不下降子序列 ...
- bzoj 2044 三维导弹拦截 —— 最小路径覆盖
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2044 第一问暴力 n^2 即可: 注意这道题对位置没要求!所以先按第一维排序一下即可: 然后 ...
- BZOJ-2150部落战争(最小路径覆盖)
2150: 部落战争 Time Limit: 10 Sec Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...
- 【HDU1960】Taxi Cab Scheme(最小路径覆盖)
Taxi Cab Scheme Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- loj 1429(可相交的最小路径覆盖)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1429 思路:这道题还是比较麻烦的,对于求有向图的可相交的最小路径覆盖,首先要解决成环问 ...
- 【HDU3861 强连通分量缩点+二分图最小路径覆盖】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...
- POJ 3216 最小路径覆盖+floyd
Repairing Company Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 6646 Accepted: 178 ...
- POJ3020Antenna Placement(最小路径覆盖+重在构图)
Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7788 Accepted: 3880 ...
随机推荐
- Count of Smaller Number before itself
Give you an integer array (index from 0 to n-1, where n is the size of this array, value from 0 to 1 ...
- juery下拉刷新,ajax请求,div加载更多元素(一)
;//设置当前页数 var flag=true; //滑动加载 $(function(){ var winH = $(window).height(); //页面可视区域高度 $(window).sc ...
- vue总结 04过渡--进入/离开 列表过渡
进入/离开 & 列表过渡 概述 Vue 在插入.更新或者移除 DOM 时,提供多种不同方式的应用过渡效果.包括以下工具: 在 CSS 过渡和动画中自动应用 class 可以配合使用第三方 CS ...
- caffe卷积操作
- Apache Lucene版本迁移指南
http://lucene.apache.org/core/4_0_0/MIGRATE.html 本文详细介绍了lucene的版本升级过程中的重大改进与调整. 比如:灵活的索引改变了低水平的域.词.文 ...
- algorithm之unique
#include<iostream> #include<algorithm> usingnamespace std; /**< unique函数的算法思想 */ vect ...
- web项目引入extjs小例子
一个新的项目,前端用extjs实现!分享一下extjs开发的准备工作! 首先去下载extjs的资源包,这里我是随便在网上下载的! 打开之后 ,目录是这样的! 需要关注的几个文件夹: builds:压缩 ...
- MIT6.006Lec01:Python实现
MIT6.006是Algo Intro这门课,据说语言使用python Lec01是讲peak finding,也就是峰值点 具体为: 一维情况下一个数组中a[i]>a[i-1]且a[i]> ...
- Alpine里的用户管理命令
注意噢,和普通的linux不一样的. 1, 建立一个指定GID的组: addgroup -g 10001 -S groupA 2, 建立一个指定UID的用户,指定shell, 让它属于指定的用户组. ...
- GUC-10 线程八锁
/* * 题目:判断打印的 "one" or "two" ? * * 1. 两个普通同步方法,两个线程,标准打印, 打印? //one two * 2. 新增 ...