题目大意:

给定\(n\)堆初始大小为\(1\)的石堆

每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\)

询问先手必赢?


不妨设我们是先手,且最后我们必胜

我们考虑构造局面\(m, m, m, m,m, ..., n\;mod\;m\)

我们从左往右依次合并出这些\(m\)堆

如果对手帮我们在当前堆上合并\(1\),那就是自寻死路

否则,如果另外的合并出了一个大小为\(2\)的堆

如果$m - $ 当前堆的大小 \(\ge 2\),那么我们把这个对手新合并出的堆合并到自己的堆上

否则,我们另取一个\(1\)合并到当前堆,然后直接取对手合并出的堆为新的需要合并的堆

所以,到达最终方案的步数是确定的,算出步数然后判断即可

(有些地方有些细微的差异,就自行讨论一下吧QAQ)


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) #define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
} int main() {
int T = read();
while(T --) {
int n = read(), m = read();
int t = n / m * (m - 1) + (n % m > 0) * (n % m - 1);
printf("%d\n", (t & 1) ? 0 : 1);
}
return 0;
}

luoguP4101 [HEOI2014]人人尽说江南好 结论的更多相关文章

  1. BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】

    BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...

  2. BZOJ 3609: [Heoi2014]人人尽说江南好

    3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 470  Solved: 336[Submit][Sta ...

  3. bzoj3609 [Heoi2014]人人尽说江南好 博弈

    [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 581  Solved: 420[Submit][Status][D ...

  4. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  5. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  6. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  7. P4101 [HEOI2014]人人尽说江南好

    题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...

  8. [HEOI2014]人人尽说江南好 博弈论

    题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...

  9. BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】

    题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...

随机推荐

  1. js 禁用右键菜单、拖拽、选中、复制

    //禁用拖拽 document.ondragstart = function () { return false; }; /** * 禁用右键菜单 */ document.oncontextmenu ...

  2. [转]STL 容器一些底层机制

    1.vector 容器 vector 的数据安排以及操作方式,与 array 非常相似.两者的唯一区别在于空间的运用的灵活性.array 是静态空间,一旦配置了就不能改变,vector 是动态数组.在 ...

  3. spring-boot-单元测试参数数

    简单案例 @RunWith(Parameterized.class) public class ParameterTest { // 2.声明变量存放预期值和测试数据 private String f ...

  4. 20165230 2017-2018-2 《Java程序设计》第8周学习总结

    20165230 2017-2018-2 <Java程序设计>第8周学习总结 教材学习内容总结 第十二章 java多线程机制 一个进程在其执行过程中,可产生多个线程.线程是比进程更小的执行 ...

  5. mysql远程连接数据库

    配置mysql允许远程连接的方法. (1)查看3306端口状态 netstat -an | grep 3306 (2)修改mysql配置文件 ubuntu系统:vim /etc/mysql/mysql ...

  6. Android Bander设计与实现 - 设计

    Binder Android IPC Linux 内核 驱动 摘要 Binder是Android系统进程间通信(IPC)方式之一.Linux已经拥有管道,system V IPC,socket等IPC ...

  7. ARKit从入门到精通

    ARKit从入门到精通(10)-ARKit让飞机绕着你飞起来 ARKit从入门到精通(9)-ARKit让飞机跟着镜头飞起来 ARKit从入门到精通(8)-ARKit捕捉平地 ARKit从入门到精通(7 ...

  8. docker 部署 portainer(http)

    =============================================== 2019/4/30_第6次修改                       ccb_warlock 更新 ...

  9. 博客转移至github

    博客转移到github 鉴于github的各种优势,博客转移!

  10. java基础31 List集合下的Vector集合

    单例集合体系: ---------| collection  单例集合的根接口--------------| List  如果实现了list接口的集合类,具备的特点:有序,可重复       注:集合 ...