luoguP4101 [HEOI2014]人人尽说江南好 结论
题目大意:
给定\(n\)堆初始大小为\(1\)的石堆
每次选择两堆石子合并,特别的,合并之后的两堆石子不能\(> m\)
询问先手必赢?
不妨设我们是先手,且最后我们必胜
我们考虑构造局面\(m, m, m, m,m, ..., n\;mod\;m\)
我们从左往右依次合并出这些\(m\)堆
如果对手帮我们在当前堆上合并\(1\),那就是自寻死路
否则,如果另外的合并出了一个大小为\(2\)的堆
如果$m - $ 当前堆的大小 \(\ge 2\),那么我们把这个对手新合并出的堆合并到自己的堆上
否则,我们另取一个\(1\)合并到当前堆,然后直接取对手合并出的堆为新的需要合并的堆
所以,到达最终方案的步数是确定的,算出步数然后判断即可
(有些地方有些细微的差异,就自行讨论一下吧QAQ)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --)
#define gc getchar
inline int read() {
int p = 0, w = 1; char c = gc();
while(c < '0' || c > '9') { if(c == '-') w = -1; c = gc(); }
while(c >= '0' && c <= '9') p = p * 10 + c - '0', c = gc();
return p * w;
}
int main() {
int T = read();
while(T --) {
int n = read(), m = read();
int t = n / m * (m - 1) + (n % m > 0) * (n % m - 1);
printf("%d\n", (t & 1) ? 0 : 1);
}
return 0;
}
luoguP4101 [HEOI2014]人人尽说江南好 结论的更多相关文章
- BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】
BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...
- BZOJ 3609: [Heoi2014]人人尽说江南好
3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 470 Solved: 336[Submit][Sta ...
- bzoj3609 [Heoi2014]人人尽说江南好 博弈
[Heoi2014]人人尽说江南好 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 581 Solved: 420[Submit][Status][D ...
- [HEOI2014] 人人尽说江南好
[HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...
- bzoj3609 [Heoi2014]人人尽说江南好
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- P4101 [HEOI2014]人人尽说江南好
题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...
- [HEOI2014]人人尽说江南好 博弈论
题面 题面 题解 感觉这题挺神仙的,根据一些奇奇怪怪的证明可以得到: 最后的终止状态一定是\(m, m, m, m, .... n \% m\). 因此我们可以O(1)计算到终止状态所需步数,然后根据 ...
- BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】
题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...
随机推荐
- dump函数
一.函数标准格式: DUMP(expr[,return_fmt[,start_position][,length]]) 基本参数时4个,最少可以填的参数是0个.当完全没有参数时,直接返回null.另外 ...
- C# 反射获取和设置值
/// <summary> /// 遍历泛型 /// </summary> /// <typeparam name="T"></typep ...
- 脚本病毒分析扫描专题2-Powershell代码阅读扫盲
4.2.PowerShell 为了保障木马样本的体积很小利于传播.攻击者会借助宏->WMI->Powershell的方式下载可执行文件恶意代码.最近也经常会遇见利用Powershell通过 ...
- 4 - django-orm基本使用
目录 1 数据库与ORM 2 orm的配置 2.1 引擎和配置 2.2 mysql驱动程序 3 orm 表模型 3.1 创建表对象 3.2 Django字段类型 3.3 常用字段参数说明 3.4 特殊 ...
- PHP获得用户的真实IP地址
<?php /** * 获得用户的真实IP地址 * * @access public * @return string */ function real_ip() { static $reali ...
- 你竟然在公钥中下毒!——如何在RSA公钥中添加后门
原文:http://www.hackdig.com/?01/hack-17893.htm 分享到: 当我知道它是如何运行时,我惊得下巴都掉了.这是一个非常简单的手法,但这篇文章会颠覆你之前对RSA的看 ...
- TDictionary 与 TObjectDictionary
TDictionary 与 TObjectDictionary 的区别是 : TObjectDictionary 可以做到 free的时候 里面的对象 一并free,从而不会出现内存 泄露. 用途: ...
- 关于SQLserver的索引的一些脚本
--判断无用的索引: SELECT TOP 30 DB_NAME() AS DatabaseName , '[' + SCHEMA_NAME(o.Schema_ID) + ']' + '.' + '[ ...
- CVE-2010-2553 Microsoft Windows Cinepak 编码解码器解压缩漏洞 分析
Microsoft Windows是微软发布的非常流行的操作系统. Microsoft Windows XP SP2和SP3,Windows Vista SP1和SP2,以及Win ...
- 题解-python-CodeForces 227A
codeforces题目,用python写 本题输入三个点坐标,考察叉积,若大于0则right,小于0则left,等于0则towards 代码: a = raw_input().split() b = ...