• 本次任务是用alertmanaer发一个报警邮件
  • 本次环境采用二进制普罗组件
  • 本次准备监控一个节点的内存,当使用率大于2%时候(测试),发邮件报警.

k8s集群使用普罗官方文档

环境准备

下载二进制https://prometheus.io/download/

https://github.com/prometheus/prometheus/releases/download/v2.0.0/prometheus-2.0.0.windows-amd64.tar.gz
https://github.com/prometheus/alertmanager/releases/download/v0.12.0/alertmanager-0.12.0.windows-amd64.tar.gz
https://github.com/prometheus/node_exporter/releases/download/v0.15.2/node_exporter-0.15.2.linux-amd64.tar.gz

解压

/root/
├── alertmanager -> alertmanager-0.12.0.linux-amd64
├── alertmanager-0.12.0.linux-amd64
├── alertmanager-0.12.0.linux-amd64.tar.gz
├── node_exporter-0.15.2.linux-amd64
├── node_exporter-0.15.2.linux-amd64.tar.gz
├── prometheus -> prometheus-2.0.0.linux-amd64
├── prometheus-2.0.0.linux-amd64
└── prometheus-2.0.0.linux-amd64.tar.gz

实验架构

配置alertmanager

创建 alert.yml

[root@n1 alertmanager]# ls
alertmanager alert.yml amtool data LICENSE NOTICE simple.yml

alert.yml 里面定义下: 谁发送 什么事件 发给谁 怎么发等.

cat alert.yml
global:
smtp_smarthost: 'smtp.163.com:25'
smtp_from: 'maotai@163.com'
smtp_auth_username: 'maotai@163.com'
smtp_auth_password: '123456' templates:
- '/root/alertmanager/template/*.tmpl' route:
group_by: ['alertname', 'cluster', 'service']
group_wait: 30s
group_interval: 5m
repeat_interval: 10m
receiver: default-receiver receivers:
- name: 'default-receiver'
email_configs:
- to: 'maotai@foxmail.com' - 配置好后启动即可
./alertmanager -config.file=./alert.yml

配置prometheus

报警规则rule.yml配置(将被prometheus.yml调用)

当使用率大于2%时候(测试),发邮件报警

$ cat rule.yml
groups:
- name: test-rule
rules:
- alert: NodeMemoryUsage
expr: (node_memory_MemTotal - (node_memory_MemFree+node_memory_Buffers+node_memory_Cached )) / node_memory_MemTotal * 100 > 2
for: 1m
labels:
severity: warning
annotations:
summary: "{{$labels.instance}}: High Memory usage detected"
description: "{{$labels.instance}}: Memory usage is above 80% (current value is: {{ $value }}"

关键在于这个公式

(node_memory_MemTotal - (node_memory_MemFree+node_memory_Buffers+node_memory_Cached )) / node_memory_MemTotal * 100 > 2

labels 给这个规则打个标签

annotations(报警说明)这部分是报警内容

监控k从哪里获取?(后面有说) node_memory_MemTotal/node_memory_Buffers/node_memory_Cached

prometheus.yml配置

  • 添加node_expolore这个job

  • 添加rule_files的报警规则,rule_files部分调用rule.yml

$ cat prometheus.yml
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute. alerting:
alertmanagers:
- static_configs:
- targets: ["localhost:9093"] rule_files:
- /root/prometheus/rule.yml scrape_configs:
- job_name: 'prometheus'
static_configs:
- targets: ['192.168.14.11:9090']
- job_name: linux
static_configs:
- targets: ['192.168.14.11:9100']
labels:
instance: db1

配置好后启动普罗然后访问,可以看到了node target了.

查看node_explore抛出的metric

查看alert,可以看到告警规则发生的状态

这些公式的key从这里可以看到(前提是当你安装了对应的explore),按照这个k来写告警公式

查看收到的邮件



微信报警配置

global:
# The smarthost and SMTP sender used for mail notifications.
resolve_timeout: 6m
smtp_smarthost: '172.16.100.14:25'
smtp_from: 'svnbuild_yf@iflytek.com'
smtp_auth_username: 'svnbuild_yf'
smtp_auth_password: 'tag#write@2015313'
smtp_require_tls: false # The auth token for Hipchat.
hipchat_auth_token: '1234556789'
# Alternative host for Hipchat.
hipchat_api_url: 'https://hipchat.foobar.org/'
wechat_api_url: "https://qyapi.weixin.qq.com/cgi-bin/"
wechat_api_secret: "4tQroVeB0xUcccccccc65Yfkj2Nkt90a80MH3ayI"
wechat_api_corp_id: "wxaf5acxxxx5f8eb98" # The directory from which notification templates are read.
templates:
- 'templates/*.tmpl' # The root route on which each incoming alert enters.
route:
# The labels by which incoming alerts are grouped together. For example,
# multiple alerts coming in for cluster=A and alertname=LatencyHigh would
# be batched into a single group.
group_by: ['alertname'] # When a new group of alerts is created by an incoming alert, wait at
# least 'group_wait' to send the initial notification.
# This way ensures that you get multiple alerts for the same group that start
# firing shortly after another are batched together on the first
# notification.
group_wait: 3s # When the first notification was sent, wait 'group_interval' to send a batch
# of new alerts that started firing for that group.
group_interval: 5m # If an alert has successfully been sent, wait 'repeat_interval' to
# resend them.
repeat_interval: 1h # A default receiver
receiver: ybyang2 routes:
- match:
job: "11"
#service: "node_exporter"
routes:
- match:
status: yellow
receiver: ybyang2
- match:
status: orange
receiver: berlin # Inhibition rules allow to mute a set of alerts given that another alert is
# firing.
# We use this to mute any warning-level notifications if the same alert is
# already critical.
inhibit_rules:
- source_match:
service: 'up'
target_match:
service: 'mysql'
# Apply inhibition if the alerqtname is the same.
equal: ["instance"] - source_match:
service: "mysql"
target_match:
service: "mysql-query"
equal: ['instance'] - source_match:
service: "A"
target_match:
service: "B"
equal: ["instance"] - source_match:
service: "B"
target_match:
service: "C"
equal: ["instance"] receivers:
- name: 'ybyang2'
email_configs:
- to: 'ybyang2@iflytek.com'
send_resolved: true
html: '{{ template "email.default.html" . }}'
headers: { Subject: "[mail] 测试技术部监控告警邮件" } - name: "berlin"
wechat_configs:
- send_resolved: true
to_user: "@all"
to_party: ""
to_tag: ""
agent_id: "1"
corp_id: "wxaf5a99ccccc5f8eb98"

[k8s]prometheus+alertmanager二进制安装实现简单邮件告警的更多相关文章

  1. prometheus + grafana + node_exporter + alertmanager 的安装部署与邮件报警 (一)

    大家一定要先看详细的理论教程,再开始搭建,这样报错后才容易找到突破口 参考文档 https://www.cnblogs.com/afterdawn/p/9020129.html https://www ...

  2. influxDB+grafana安装配置及邮件告警发送配置

    1. InfluxDB安装 下载包并解压: $:wgethttps://dl.influxdata.com/influxdb/releases/influxdb-1.3.6_linux_amd64.t ...

  3. cadvisor+prometheus+alertmanager+grafana完成容器化监控告警(一)

    一.概况 1.拓扑图 2.名词解释 Grafana 可视化监控容器运行情况 Prometheus: 开源系统监视和警报工具包 Alertmanager 一个独立的组件,负责接收并处理来自Prometh ...

  4. jmx_prometheus_javaagent+prometheus+alertmanager+grafana完成容器化java监控告警(二)

    一.拓扑图 二.收集数据 2.1前期准备 创建共享目录,即为了各节点都创建该目录,有两个文件,做数据共享 /home/target/prom-jvm-demo 1.下载文件 jmx_prometheu ...

  5. kubernetes实战(二十):k8s一键部署高可用Prometheus并实现邮件告警

    1.基本概念 本次部署使用的是CoreOS的prometheus-operator. 本次部署包含监控etcd集群. 本次部署适用于二进制和kubeadm安装方式. 本次部署适用于k8s v1.10版 ...

  6. kubernetes(k8s) Prometheus+grafana监控告警安装部署

    主机数据收集 主机数据的采集是集群监控的基础:外部模块收集各个主机采集到的数据分析就能对整个集群完成监控和告警等功能.一般主机数据采集和对外提供数据使用cAdvisor 和node-exporter等 ...

  7. Prometheus + AlertManager 邮件报警

    安装 wget https://github.com/prometheus/alertmanager/releases/download/v0.13.0/alertmanager-0.13.0.lin ...

  8. Prometheus 监控报警系统 AlertManager 之邮件告警

    转载自:https://cloud.tencent.com/developer/article/1486483 文章目录1.Prometheus & AlertManager 介绍2.环境.软 ...

  9. [k8s]prometheus+grafana监控node和mysql(普罗/grafana均vm安装)

    https://github.com/prometheus/prometheus Architecture overview Prometheus Server Prometheus Server 负 ...

随机推荐

  1. Java中执行存储过程和函数(web基础学习笔记十四)

    一.概述 如果想要执行存储过程,我们应该使用 CallableStatement 接口. CallableStatement 接口继承自PreparedStatement 接口.所以CallableS ...

  2. HTML二(基本标签)

    一.标题 HTML 标题(Heading)是通过 <h1> - <h6> 等标签进行定义的. <!--标题--> <h1>标题 1</h1> ...

  3. ORACLE NVL 和 NVL2 函数的使用

    NVL函数是一个空值转换函数,在SQL查询中主要用来处理null值.在不支持 null 值或 null 值无关紧要的情况下,可以使用 NVL( ) 来移去计算或操作中的 null 值. Oracle在 ...

  4. exception http://java.sun.com/jsp/jstl/core cannot be resolved in either web.xml or the jar files deployed with this application

      http://java.sun.com/jsp/jstl/core cannot be resolved in either web.xml or the jar files deployed w ...

  5. 微信QQ的二维码登录原理js代码解析

    这篇文章主要大家详细解析了微信QQ的二维码登录原理js代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 在很多地方就是都出现了使用二维码登录,二维码付款,二维码账户等应用(这里的二维码种马,诈骗 ...

  6. servlet 多线程

    servlet在服务器中只有一个实例,那么它响应请求的方式应该是多线程. 一,servlet容器如何同时处理多个请求. Servlet采用多线程来处理多个请求同时访问,Servelet容器维护了一个线 ...

  7. C#线程访问winform窗体控件

    参考地址:http://www.cnblogs.com/jason-liu-blogs/archive/2012/09/08/2677008.html 添加: public Form() { Init ...

  8. 架构-LAMP特级学习(网站大存储量解决方案)

    数据库采用主从.分区技术 数据库优化

  9. HDUOJ----John

    John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submis ...

  10. 【LeetCode】146. LRU Cache

    LRU Cache Design and implement a data structure for Least Recently Used (LRU) cache. It should suppo ...