ZCMU 1019: 分金币
解题思路:
附上刘汝佳老师的解题过程:
首先最终每个人的金币数量可以计算出来,它等于金币总数除以人数n。接下来用M来表示每个人最终拥有的金币数。
现在假设编号为 i 的人初始有Ai 枚金币,对于1号来说,他给了4号x1枚金币,还剩Ai -x1枚金币;但是2号给了他x2枚金币,所以还剩A1-x1+x2枚金币。所以A1-x1+x2=M。同理对于第2个人,有A2-x2+x3=M。最终得到n个方程,实际上只有n-1个有用
尝试用x1表示出其他的xi ,则本题就变成了单变量的极值问题。
对于第1个人,A1-x1+x2=M → x2=M-A1+x1=x1-C1(规定C1=A1-M,下面类似)
对于第2个人,A2-x2+x3=M → x3=M-A2+x2=2M-A1-A2+x1=x1-C2
对于第3个人,A3-x3+x4=M → x4=M-A3+x3=3M-A1-A2-A3+x1=x1-C3
...
对于第n个人,An-xn+x1=M。这是一个多余的等式。
我们希望所有xi 的绝对值之和尽量小,即|x1|+|x1-C1|+|x1-C2|+...+|x1-Cn-1|要最小。注意到|x1-Ci|的几何意义是数轴上的点x1到Ci 的距离,所以问题变成了:给定数轴上n个点,找出一个到他们距离之和尽量小的点。
而这个点就是中位数,它实在是太优美,太巧妙了,而且不少其他问题也能用的上。
代码:
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
long long a[],b[];
int main()
{
int n,i;
long long k,sum,t;
while(~scanf("%d",&n))
{
k=;
for(i=;i<=n;i++)
{
scanf("%lld",&a[i]);
k=k+a[i];
}
k=k/n;
b[]=;
for(i=;i<n;i++)
{
b[i]=b[i-]+a[i]-k;
}
sort(b,b+n);
t=b[n/];
sum=;
for(i=;i<n;i++)
{
sum=sum+abs(t-b[i]);
}
printf("%lld\n",sum);
}
return ;
}
ZCMU 1019: 分金币的更多相关文章
- 分金币 bzoj 3293
分金币(1s 128M) coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...
- 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞
3293: [Cqoi2011]分金币 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 854 Solved: 476[Submit][Status] ...
- 【贪心+中位数】【UVa 11300】 分金币
(解方程建模+中位数求最短累积位移) 分金币(Spreading the Wealth, UVa 11300) 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一 ...
- 【BZOJ3293】分金币(贪心)
[BZOJ3293]分金币(贪心) 题面 BZOJ 洛谷 题解 和上一题一样啊. #include<cstdio> #include<cmath> #include<al ...
- BZOJ3293: [Cqoi2011]分金币(数学)
3293: [Cqoi2011]分金币 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1596 Solved: 969[Submit][Status ...
- cogs 1430. [UVa 11300]分金币
1430. [UVa 11300]分金币 ★☆ 输入文件:Wealth.in 输出文件:Wealth.out 简单对比时间限制:1 s 内存限制:256 MB [题目描述] 圆桌旁坐着 ...
- Java实现蓝桥杯分金币
分金币 圆桌旁坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币, 最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. 比如,n=4,且4个人 ...
- java实现第五届蓝桥杯海盗分金币
海盗分金币 有5个海盗,相约进行一次帆船比赛. 比赛中天气发生突变,他们被冲散了. 恰巧,他们都先后经过途中的一个无名的荒岛,并且每个人都信心满满,觉得自己是第一个经过该岛的人. 第一个人在沙滩上发现 ...
- [luogu3878][TJOI2010]分金币【模拟退火】
题目描述 现在有n枚金币,它们可能会有不同的价值,现在要把它们分成两部分,要求这两部分金币数目之差不超过1,问这样分成的两部分金币的价值之差最小是多少? 分析 根据模拟退火的基本套路,先随机分两堆金币 ...
随机推荐
- Linux 网络流量查看 Linux ip traffic monitor
Network monitoring on Linux This post mentions some linux command line tools that can be used to mon ...
- c#实现内存映射文件共享内存
原文:http://blog.csdn.net/wangtiewei/article/details/51112668 内存映射文件是利用虚拟内存把文件映射到进程的地址空间中去,在此之后进程操作文件, ...
- Vue 框架-11-介绍src文件流程及根组件app+HBuilder 配置
Vue 框架-11-介绍src文件流程及根组件app+HBuilder 配置 这是上一篇对目录简单介绍: 关于编辑器,可以使用轻量级的 Sublime Text 3,我使用的是 HBuilder, 但 ...
- redis 管道技术 pipeline 简介
redis数据库的主要瓶颈是网络速度,其次是内存与cpu.在应用允许的情况下,优先使用pipeline批量操作.pipeline批量发出请求/一次性获取响应:不是发出多个请求,每个请求都阻塞等待响应, ...
- maven 结合mybaits整合框架,打包时mapper.xml文件,mapper目录打不进war包去问题
首先,来看下MAVENx项目标准的目录结构: 一般情况下,我们用到的资源文件(各种xml,properites,xsd文件等)都放在src/main/resources下面,利用maven打包时,ma ...
- Django Redis验证码 密码 session 实例
1.settings CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCach ...
- Linux 环境下为VirtualBox安装增强功能
VirtualBox安装CentOS后,再安装增强功能就可以共享文件夹.粘贴板以及鼠标无缝移动,主要步骤如下: 1.yum -y update 2.yum -y install g++ gcc gcc ...
- zabbix系列之四——快速使用
https://www.zabbix.com/documentation/3.4/manual/quickstart/login Quickstart 1login and configuring u ...
- statistical thinking in Python EDA
Histgram直方图适合于单个变量的value分布图形 seaborn在matplotlib基础上做了更高层的抽象,方便对基础的图表绘制.也可以继续使用matplotlib直接绘图,但是调用seab ...
- Oracle v$session/v$sql 表
在本视图中,每一个连接到数据库实例中的 session都拥有一条记录.包括用户 session及后台进程如 DBWR, LGWR, arcchiver等等. V$SESSION中的常用列 V$SESS ...