[2018HN省队集训D5T2] party
[2018HN省队集训D5T2] party
题意
给定一棵 \(n\) 个点以 \(1\) 为根的有根树, 每个点有一个 \([1,m]\) 的权值.
有 \(q\) 个查询, 每次给定一个大小为 \(c\) 的点集, 点集中的每个点都可以选择若干从自身到所有点的LCA的路径上的点的权值. 要求所有点选取的权值之间都不能重复且每个点选择的权值种类数相等. 求最大的总种类数量.
\(n\le 3\times 10^5,m\le 1000, q\le 5\times 10^4,c\le5\).
题解
注意到 \(m\) 的范围比较小, 我们一点都不显然可以用 std::bitset
来维护某条路径上存在的权值集合.
然后我们如果要暴力判定的话, 可以二分答案/多次增广+Dinic来跑. 从这个过程中可以看出我们实际上要求的是满足一边有 \(c\times k\) 个点另一边有 \(m\) 个点的二分图存在完美匹配的最大的 \(k\).
涉及到完美匹配的判定, 我们有一个玄学定理叫霍尔定理. 大体内容是:
一个二分图 \(G\) 存在完美匹配, 当且仅当 \(X\) 中的任意 \(k\) 个点都至少与 \(Y\) 中的 \(k\) 个点邻接.
不难发现左部的 \(c\times k\) 个点中只有 \(c\) 种邻接关系不同的点, 所以我们 \(2^c\)枚举左部点的子集, 用 std::bitset
取并来计算邻接点个数, 则 \(k\) 的最大值即为邻接点个数与左部点子集大小的比值的最小值.
于是就这么跑就可以了. 代码极为好写.
不过查询路径的时候如果用普通树剖+线段树的话是 \(\log^2\) 的, 注意到我们只会求某个点的祖先到某个点的路径, 也就是说除了最浅的一条链之外其他的链都只取了一个前缀. 于是记录每个点到链顶的前缀和, 最后一次查询用线段树就可以把复杂度降到一个 \(\log\) 了. 然而犯懒没写...不加这个优化跑得也挺快的qwq
参考代码
#include <bits/stdc++.h>
const int MAXV=3e5+10;
const int MAXE=1e6+10;
typedef std::bitset<1024> bits;
struct Edge{
int from;
int to;
Edge* next;
};
Edge E[MAXE];
Edge* head[MAXV];
Edge* topE=E;
struct Node{
int l;
int r;
bits val;
Node* lch;
Node* rch;
Node(int,int);
bits Query(int,int);
};
Node* N;
int n;
int m;
int q;
int clk;
int t[10];
bits b[10];
int a[MAXV];
int dfn[MAXV];
int pos[MAXV];
int prt[MAXV];
int son[MAXV];
int top[MAXV];
int size[MAXV];
int deep[MAXV];
int LCA(int,int);
void DFS(int,int);
bits Query(int,int);
void Insert(int,int);
void DFS(int,int,int);
int main(){
scanf("%d%d%d",&n,&m,&q);
for(int i=2;i<=n;i++){
int x;
scanf("%d",&x);
Insert(x,i);
}
for(int i=1;i<=n;i++)
scanf("%d",a+i);
DFS(1,0,0);
DFS(1,1);
N=new Node(1,n);
while(q--){
int c=0;
scanf("%d",&c);
scanf("%d",t);
int lca=t[0];
for(int i=1;i<c;i++){
scanf("%d",t+i);
lca=LCA(lca,t[i]);
}
for(int i=0;i<c;i++)
b[i]=Query(lca,t[i]);
int ans=INT_MAX;
for(int s=1;s<(1<<c);s++){
bits cur;
int cnt=0;
for(int i=0;i<c;i++){
if((1<<i)&s){
++cnt;
cur|=b[i];
}
}
ans=std::min<int>(ans,cur.count()/cnt);
}
printf("%d\n",ans*c);
}
return 0;
}
int LCA(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
return x;
}
bits Query(int x,int y){
bits ans;
while(top[x]!=top[y]){
if(deep[top[x]]<deep[top[y]])
std::swap(x,y);
ans|=N->Query(dfn[top[x]],dfn[x]);
x=prt[top[x]];
}
if(deep[x]>deep[y])
std::swap(x,y);
ans|=N->Query(dfn[x],dfn[y]);
return ans;
}
Node::Node(int l,int r):l(l),r(r){
if(l==r)
this->val.set(a[pos[l]]);
else{
int mid=(l+r)>>1;
this->lch=new Node(l,mid);
this->rch=new Node(mid+1,r);
this->val=this->lch->val|this->rch->val;
}
}
bits Node::Query(int l,int r){
if(l<=this->l&&this->r<=r)
return this->val;
else{
if(r<=this->lch->r)
return this->lch->Query(l,r);
if(this->rch->l<=l)
return this->rch->Query(l,r);
return this->lch->Query(l,r)|this->rch->Query(l,r);
}
}
void DFS(int root,int prt,int deep){
::prt[root]=prt;
::deep[root]=deep;
::size[root]=1;
for(Edge* i=head[root];i!=NULL;i=i->next){
if(i->to!=prt){
DFS(i->to,root,deep+1);
size[root]+=size[i->to];
if(size[i->to]>size[son[root]])
son[root]=i->to;
}
}
}
void DFS(int root,int top){
++clk;
::dfn[root]=clk;
::pos[clk]=root;
::top[root]=top;
if(son[root])
DFS(son[root],top);
for(Edge* i=head[root];i!=NULL;i=i->next)
if(i->to!=prt[root]&&i->to!=son[root])
DFS(i->to,i->to);
}
inline void Insert(int from,int to){
topE->from=from;
topE->to=to;
topE->next=head[from];
head[from]=topE++;
}
[2018HN省队集训D5T2] party的更多相关文章
- [2018HN省队集训D9T1] circle
[2018HN省队集训D9T1] circle 题意 给定一个 \(n\) 个点的竞赛图并在其中钦定了 \(k\) 个点, 数据保证删去钦定的 \(k\) 个点后这个图没有环. 问在不删去钦定的这 \ ...
- [2018HN省队集训D8T1] 杀毒软件
[2018HN省队集训D8T1] 杀毒软件 题意 给定一个 \(m\) 个01串的字典以及一个长度为 \(n\) 的 01? 序列. 对这个序列进行 \(q\) 次操作, 修改某个位置的字符情况以及查 ...
- [2018HN省队集训D8T3] 水果拼盘
[2018HN省队集训D8T3] 水果拼盘 题意 给定 \(n\) 个集合, 每个集合包含 \([1,m]\) 中的一些整数, 在这些集合中随机选取 \(k\) 个集合, 求这 \(k\) 个集合的并 ...
- [2018HN省队集训D6T2] girls
[2018HN省队集训D6T2] girls 题意 给定一张 \(n\) 个点 \(m\) 条边的无向图, 求选三个不同结点并使它们两两不邻接的所有方案的权值和 \(\bmod 2^{64}\) 的值 ...
- [Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform
[Luogu P4143] 采集矿石 [2018HN省队集训D5T3] 望乡台platform 题意 给定一个小写字母构成的字符串, 每个字符有一个非负权值. 输出所有满足权值和等于这个子串在所有本质 ...
- [2018HN省队集训D5T1] 沼泽地marshland
[2018HN省队集训D5T1] 沼泽地marshland 题意 给定一张 \(n\times n\) 的棋盘, 对于位置 \((x,y)\), 若 \(x+y\) 为奇数则可能有一个正权值. 你可以 ...
- [Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard
[Codeforces 321D][2018HN省队集训D4T2] Ciel and Flipboard 题意 给定一个 \(n\times n\) 的矩阵 \(A\), (\(n\) 为奇数) , ...
- [2018HN省队集训D1T3] Or
[2018HN省队集训D1T3] Or 题意 给定 \(n\) 和 \(k\), 求长度为 \(n\) 的满足下列条件的数列的数量模 \(998244353\) 的值: 所有值在 \([1,2^k)\ ...
- [2018HN省队集训D1T1] Tree
[2018HN省队集训D1T1] Tree 题意 给定一棵带点权树, 要求支持下面三种操作: 1 root 将 root 设为根. 2 u v d 将以 \(\operatorname{LCA} (u ...
随机推荐
- 如何在生产环境禁用swagger
pringMVC集成springfox-swagger2和springfox-swagger-ui很简单,只需要两步: (1)pom中添加依赖 <dependency> <group ...
- [转]ASP.NET Core配置环境变量和启动设置
本文转自:https://www.cnblogs.com/tdfblog/p/Environments-LaunchSettings-in-Asp-Net-Core.html 在这一部分内容中,我们来 ...
- 4.1 SQL的本质
对于早期的关系数据库,整个行业做了很多努力,试图统一不同的专用查询语言.IBM曾建立了一个早期的标准,被称为Structured English Query Language,这个名字缩写为SEQUE ...
- Application.DoEvents()和多线程
首先将以下代码放到Button事件里面: private void btnStart_Click(object sender, EventArgs e) { for (int q = 0; ...
- HTML杂项和HTML废弃标签
一.HTML杂项 1.HTML注释 <!-- 里边放要注释的文字 --> 1)html的注释是为了方便后期的维护,方便后期更改时能够快速的定位到所需更改的部分 2)html的注释在页面的 ...
- elasticsearch 6.3 安装手记
系统环境 centos 7 elasticsearch 6.3 需要 JDK 8 版本,先安装 JDK 8. ES6.3 安装地址: https://www.elastic.co/guide/en/e ...
- spring AOP 动态代理和静态代理以及事务
AOP(Aspect Oriented Programming),即面向切面编程 AOP技术,它利用一种称为"横切"的技术,剖解开封装的对象内部,并将那些影响了多个类的公共行为封装 ...
- js-权威指南学习笔记3
第四章 表达式和运算符 1.最简单的表达式是原始表达式,是表达式的最小单位——它们不再包含其他表达式.JS中原始表达式包含常量或直接量.关键字和变量. 2.一个对象的属性名不是固定值时,必须使用方括号 ...
- 地图经纬度坐标与屏幕坐标的转换(android版)
我们在开发GIS系统的时候,首先要解决的就是地图的可视化问题,这个问题的关键就在于如何把地图的坐标转换成屏幕坐标,然后才到渲染着色.标注等.以下以wgs84经纬度坐标为基准,介绍一下地图经纬度坐标与屏 ...
- 多个raq导出一个excel2007中
需求描述: 客户以前通过润乾API把多个raq模板数据来导出到一个excel文件中,由于现在数据量过大一个raq数据就超过了65535,原来的2003接口已经满足不了现在的需求, ...