https://pintia.cn/problem-sets/994805342720868352/problems/1038430013544464384

The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C​1​​ C​2​​ ... C​n​​

where n is the number of cities in the list, and C​i​​'s are the cities on a path.

Output Specification:

For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

  • TS simple cycle if it is a simple cycle that visits every city;
  • TS cycle if it is a cycle that visits every city, but not a simple cycle;
  • Not a TS cycle if it is NOT a cycle that visits every city.

Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

Sample Input:

6 10
6 2 1
3 4 1
1 5 1
2 5 1
3 1 8
4 1 6
1 6 1
6 3 1
1 2 1
4 5 1
7
7 5 1 4 3 6 2 5
7 6 1 3 4 5 2 6
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 2 5 4 3 1
7 6 3 2 5 4 1 6

Sample Output:

Path 1: 11 (TS simple cycle)
Path 2: 13 (TS simple cycle)
Path 3: 10 (Not a TS cycle)
Path 4: 8 (TS cycle)
Path 5: 3 (Not a TS cycle)
Path 6: 13 (Not a TS cycle)
Path 7: NA (Not a TS cycle)
Shortest Dist(4) = 8
 

代码:

#include <bits/stdc++.h>
using namespace std; #define inf 0x3f3f3f3f
int N, M, K;
int dis[220][220];
int vis[220], go[220]; int main() {
scanf("%d%d", &N, &M);
memset(dis, inf, sizeof(dis));
while(M --) {
int st, en, cost;
scanf("%d%d%d", &st, &en, &cost);
if(cost < dis[st][en]) {
dis[st][en] = cost;
dis[en][st] = dis[st][en];
}
} scanf("%d", &K);
int temp = 0, ans = INT_MAX;
for(int k = 1; k <= K; k ++) {
int T;
bool can = false;
int cnt1 = 0, cnt2 = 0;
memset(vis, 0, sizeof(vis));
bool flag = true;
int sum = 0;
scanf("%d", &T);
for(int i = 1; i <= T; i ++) {
scanf("%d", &go[i]);
vis[go[i]] ++;
if(i > 1) {
if(dis[go[i]][go[i - 1]] != inf) {
sum += dis[go[i]][go[i - 1]];
}
else flag = false;
}
} printf("Path %d: ", k);
if(!flag)
printf("NA (Not a TS cycle)\n");
else {
int iscycle = 0;
for(int i = 1; i <= N; i ++) {
if(vis[i] == 0)
iscycle = 1;
if(vis[i] == 1) cnt1 ++;
if(vis[i] > 1) cnt2 ++;
} if(iscycle == 1) printf("%d (Not a TS cycle)\n", sum);
else if(cnt2 == 1 && vis[go[1]] == 2) {
can = true;
printf("%d (TS simple cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] >= 2) {
can = true;
printf("%d (TS cycle)\n", sum);
}
else if(cnt2 >= 1 && vis[go[1]] < 2)
printf("%d (Not a TS cycle)\n", sum);
else printf("%d (Not a TS cycle)\n", sum); if(can && sum < ans) {
ans = sum;
temp = k;
} } } printf("Shortest Dist(%d) = %d\n", temp, ans);
return 0;
}

  被图论支配的上午 暴躁 Be 主 在线编程

一会有牛客的比赛 哭咧咧

PAT 甲级 1150 Travelling Salesman Problem的更多相关文章

  1. 1150 Travelling Salesman Problem(25 分)

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  2. 1150 Travelling Salesman Problem

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  3. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  4. PAT_A1150#Travelling Salesman Problem

    Source: PAT A1150 Travelling Salesman Problem (25 分) Description: The "travelling salesman prob ...

  5. 构造 - HDU 5402 Travelling Salesman Problem

    Travelling Salesman Problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5402 Mean: 现有一 ...

  6. HDU 5402 Travelling Salesman Problem (构造)(好题)

    大致题意:n*m的非负数矩阵,从(1,1) 仅仅能向四面走,一直走到(n,m)为终点.路径的权就是数的和.输出一条权值最大的路径方案 思路:因为这是非负数,要是有负数就是神题了,要是n,m中有一个是奇 ...

  7. HDOJ 5402 Travelling Salesman Problem 模拟

    行数或列数为奇数就能够所有走完. 行数和列数都是偶数,能够选择空出一个(x+y)为奇数的点. 假设要空出一个(x+y)为偶数的点,则必须空出其它(x+y)为奇数的点 Travelling Salesm ...

  8. HDU 5402 Travelling Salesman Problem (模拟 有规律)(左上角到右下角路径权值最大,输出路径)

    Travelling Salesman Problem Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 65536/65536 K (J ...

  9. PAT-1150(Travelling Salesman Problem)旅行商问题简化+模拟图+简单回路判断

    Travelling Salesman Problem PAT-1150 #include<iostream> #include<cstring> #include<st ...

随机推荐

  1. WPF-学习笔记 动态修改控件Margin的值

    原文:WPF-学习笔记 动态修改控件Margin的值 举例说明:动态添加一个TextBox到Grid中,并设置它的Margin: TextBox text = new TextBox(); t_gri ...

  2. BZOJ2120_数颜色_KEY

    题目传送门 裸的带修莫队. 在Sort时如果左右区间都在同一块中,就按询问的修改的先后Sort. 对于每次查询判断向前或向后修改. 当size为N*2/3时据说是最优.O(N^(3/5)). code ...

  3. Noip前的大抱佛脚----奇技淫巧

    STL函数 set set查找前驱后继 multiset<int>::iterator iter; S.insert(x); iter=S.find(x);//返回迭代器 iter--;/ ...

  4. Linux下开发python django程序(django数据库多对多关系)

    1.多对多关系数据访问 models.py设置 from django.db import models # Create your models here. sex_choices=( ('f',' ...

  5. callable(object)

    callable(object) 中文说明:检查对象object是否可调用.如果返回True,object仍然可能调用失败:但如果返回False,调用对象ojbect绝对不会成功. 注意:类是可调用的 ...

  6. 【BZOJ3555】企鹅QQ

    蛤希. 用map会T. 只需要枚举删掉哪个字符,然后算出每个的hash值,sort一遍就行了. 用map会T!!! // It is made by XZZ #include<cstdio> ...

  7. java多线程系列(二)---对象变量并发访问

    对象变量的并发访问 前言:本系列将从零开始讲解java多线程相关的技术,内容参考于<java多线程核心技术>与<java并发编程实战>等相关资料,希望站在巨人的肩膀上,再通过我 ...

  8. python时间模块详解(time模块)

    time 模块 -- 时间获取和转换 time 模块提供各种时间相关的功能 在 Python 中,与时间处理有关的模块包括:time,datetime 以及 calendar 必要说明: 虽然这个模块 ...

  9. 自动分配ip的方法- 【Linux】

    1.  查看本机无线网络使用的网卡 2.  设置vbox的网络连接为桥接,并选择本机无线网络对应的网卡 3.  进入系统,输入ifconfig命令,记录下系统的HWaddr 4.  修改系统ip配置文 ...

  10. Netty源码分析第2章(NioEventLoop)---->第8节: 执行任务队列

      Netty源码分析第二章: NioEventLoop   第八节: 执行任务队列 继续回到NioEventLoop的run()方法: protected void run() { for (;;) ...