如果未做特别说明,文中的程序都是 C++11 代码。

QuantLib 金融计算——高级话题之模拟跳扩散过程

跳扩散过程

1976 年,Merton 最早在衍生品定价中引入并分析了跳扩散过程,正因为如此 QuantLib 中和跳扩散相关的随机过程类称之为 Merton76Process,一个一般的跳扩散过程可以由下面的 SDE 描述,

\[\frac{dS(t)}{S(t-)} = \mu dt + \sigma dW(t) + dJ(t)\\
J(t) = \sum_{j=1}^{N(t)}(Y_j-1)
\]

其中 \(Y_j\) 是随机变量,\(N(t)\) 是计数过程。\(dJ(t)\) 表示 \(J(t)\) 在 \(t\) 时刻发生的跳跃幅度,如果发生一次跳,则幅度为 \(Y_j-1\);如果没有发生跳,则幅度为 0。

在应用于衍生品定价时,需要对上述 SDE 中的项做出一些特殊约定,常见的约定有:

  1. \(N(t)\) 是参数等于 \(\lambda\) 的 Poisson 过程;
  2. \(\log Y_j\) 服从正态分布 \(N(\mu_{jump}, \sigma_{jump}^{2})\);
  3. \(\mu = r - \lambda m\),其中 \(m = E[Y_j] - 1\),\(r\) 代表无风险利率

模拟算法

令 \(X(t) = \log S(t)\),那么

\[\begin{aligned}
X(t_{i+1}) = & X(t_i) +
\left(\mu - \frac12 \sigma^2 \right)(t_{i+1} - t_i)\\
& +\sigma[W(t_{i+1}) - W(t_i)] +
\sum_{j = N(t_i)+1}^{N(t_{i+1})}\log Y_j
\end{aligned}
\]

在 \(X(t_i)\) 的基础上模拟 \(X(t_{i+1})\) 的算法如下:

  1. 生成 \(Z \sim N(0,1)\);
  2. 生成 \(N \sim \text{Poisson}(\lambda(t_{i+1}-t_i))\),若 \(N=0\),则令 \(M=0\),并转到第 4 步;
  3. 生成 \(\log Y_1,\dots,\log Y_N\),令 \(M = \log Y_1+\dots+\log Y_N\);
  4. 令 \(X(t_{i+1}) = X(t_i) + \left(\mu - \frac12 \sigma^2 \right)(t_{i+1} - t_i) +\sigma \sqrt{t_{i+1} - t_i} Z + M\)

那么

\[\begin{aligned}
S_{t_{i+1}} =& S_{t_i} e^{(r-\lambda m -\frac{1}{2}\sigma^{2})\Delta t+ \sigma Z \sqrt{\Delta t} + M}\\
=& S_{t_i} e^{(r-\frac{1}{2}\sigma^{2})\Delta t+ \sigma Z \sqrt{\Delta t}}e^{(-\lambda m)\Delta t+M}
\end{aligned}
\]

其中,\(\Delta t = t_{i+1} - t_i\),而 \(e^{(-\lambda m)\Delta t+M}\) 是跳扩散相对于一般 Black-Scholes-Merton 过程的修正项。

面临的问题

目前 QuantLib 中提供的 Merton76Process 类只能配合“解析定价引擎”使用,本身不具备模拟随机过程路径的功能。究其原因,问题出在 QuantLib 的编码约定和 StochasticProcess1D 提供的接口两方面:

  1. QuantLib 中约定 StochasticProcess 派生出的子类仅能描述 SDE 的结构信息,也就是 SDE 的参数、漂移和扩散项的函数形式,子类不携带有关随机数生成的信息,所有随机数生成的相关信息均由 Monte Carlo 框架中其他组件控制;
  2. 生成随机过程路径的核心函数是 evolve 方法,StochasticProcess1D 提供的接口是 evolve(Time t0, Real x0, Time dt, Real dw)。如果 Merton76Process 按约定实现 evolve 方法的话,形式必须是 evolve(Time t0, Real x0, Time dt, const Array &dw),因为模拟跳需要额外的随机性,所以 dw 必须是一个 Array。很明显,不匹配。

“脏”的方法

在不改变当前接口的前提下,若要实现模拟跳扩散过程,需要用比较“”一点儿的手段,即打破约定,让随机过程类携带一个随机数发生器,为模拟跳提供额外的随机性。

具体来说,需要声明一个 Merton76Process 的派生类,该类携带一个高斯随机数发生器。因为从数学上来讲跳扩散过程推广自一般 Black-Scholes-Merton 过程,添加了一个修正项,所以遵循“适配器模式”(或“装饰器模式”)的思想,绝大部分计算可以委托给一个 BlackScholesMertonProcess 对象,仅需要对 driftevolve 方法作必要的修改。

“干净”的方法

当然,“干净”的方法要改变当前接口:

  1. 声明一个和 StochasticProcess1D 平行的新类 StochasticProcess1DJump,二者唯一的区别是 evolve 方法,在 StochasticProcess1DJump 中形式是 evolve(Time t0, Real x0, Time dt, const Array &dw)
  2. Merton76Process 改成继承自 StochasticProcess1DJump

实现

下面的代码实现了前面提到的“脏”的方法,因为随机数发生器的种类有很多,且没有基类提供统一的接口,所以使用了模板技术让类可以接受不同类型的随机数发生器。同时,许多计算被委托给了一个 BlackScholesMertonProcess 对象。

#ifndef MERTON76JUMPDIFFUSIONPROCESS_HPP
#define MERTON76JUMPDIFFUSIONPROCESS_HPP #include <ql/math/distributions/normaldistribution.hpp>
#include <ql/math/distributions/poissondistribution.hpp>
#include <ql/math/randomnumbers/boxmullergaussianrng.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/processes/merton76process.hpp> namespace QuantLib
{
template<typename GAUSS_RNG>
class Merton76JumpDiffusionProcess : public Merton76Process
{
public:
Merton76JumpDiffusionProcess(const Handle<Quote>& stateVariable,
const Handle<YieldTermStructure>& dividendTS,
const Handle<YieldTermStructure>& riskFreeTS,
const Handle<BlackVolTermStructure>& blackVolTS,
const Handle<Quote>& jumpInt,
const Handle<Quote>& logJMean,
const Handle<Quote>& logJVol,
const GAUSS_RNG& gauss_rng,
const ext::shared_ptr<discretization>& disc =
ext::shared_ptr<discretization>(new EulerDiscretization))
: Merton76Process(
stateVariable,
dividendTS,
riskFreeTS,
blackVolTS,
jumpInt,
logJMean,
logJVol,
disc)
, blackProcess_(
new BlackScholesMertonProcess(
stateVariable,
dividendTS,
riskFreeTS,
blackVolTS,
disc))
, gauss_rng_(gauss_rng)
{
}
virtual ~Merton76JumpDiffusionProcess() {} Real x0() const
{
return blackProcess_->x0();
}
Time time(const Date& d) const
{
return blackProcess_->time(d);
}
Real diffusion(Time t,
Real x) const
{
return blackProcess_->diffusion(t, x);
}
Real apply(Real x0,
Real dx) const
{
return blackProcess_->apply(x0, dx);
}
Size factors() const
{
return 1;
}
Real drift(Time t,
Real x) const
{
Real lambda_ = Merton76Process::jumpIntensity()->value();
Real delta_ = Merton76Process::logJumpVolatility()->value();
Real nu_ = Merton76Process::logMeanJump()->value();
Real m_ = std::exp(nu_ + 0.5 * delta_ * delta_) - 1; return blackProcess_->drift(t, x) - lambda_ * m_;
}
Real evolve(Time t0,
Real x0,
Time dt,
Real dw) const; private:
const CumulativeNormalDistribution cumNormalDist_;
ext::shared_ptr<GeneralizedBlackScholesProcess> blackProcess_;
GAUSS_RNG gauss_rng_;
}; template<typename GAUSS_RNG>
Real Merton76JumpDiffusionProcess<GAUSS_RNG>::evolve(Time t0,
Real x0,
Time dt,
Real dw) const
{
Real lambda_ = Merton76Process::jumpIntensity()->value();
Real delta_ = Merton76Process::logJumpVolatility()->value();
Real nu_ = Merton76Process::logMeanJump()->value();
Real m_ = std::exp(nu_ + 0.5 * delta_ * delta_) - 1; Real p = cumNormalDist_(gauss_rng_.next().value);
if (p < 0.0)
p = 0.0;
else if (p >= 1.0)
p = 1.0 - QL_EPSILON; Real j = gauss_rng_.next().value;
const Real n = InverseCumulativePoisson(lambda_ * dt)(p);
Real retVal = blackProcess_->evolve(
t0, x0, dt, dw);
retVal *=
std::exp(-lambda_ * m_ * dt + nu_ * n + delta_ * std::sqrt(n) * j); return retVal;
}
}
#endif // MERTON76JUMPDIFFUSIONPROCESS_HPP

示例

下面模拟两条曲线

#include <iostream>

#include <ql/math/randomnumbers/boxmullergaussianrng.hpp>
#include <ql/math/randomnumbers/mt19937uniformrng.hpp>
#include <ql/processes/blackscholesprocess.hpp>
#include <ql/quotes/simplequote.hpp>
#include <ql/termstructures/volatility/equityfx/blackconstantvol.hpp>
#include <ql/termstructures/yield/flatforward.hpp>
#include <ql/time/calendars/target.hpp>
#include <ql/time/date.hpp>
#include <ql/time/daycounters/actualactual.hpp> #include "Merton76JumpDiffusionProcess.hpp" int main() {
using namespace std;
using namespace QuantLib; Date refDate = Date(27, Mar, 2019);
Rate riskFreeRate = 0.03;
Rate dividendRate = 0.01;
Real spot = 52.0;
Rate vol = 0.2;
Calendar cal = TARGET();
DayCounter dc = ActualActual(); ext::shared_ptr<YieldTermStructure> rdStruct(
new FlatForward(refDate, riskFreeRate, dc));
ext::shared_ptr<YieldTermStructure> rqStruct(
new FlatForward(refDate, dividendRate, dc));
Handle<YieldTermStructure> rdHandle(rdStruct);
Handle<YieldTermStructure> rqHandle(rqStruct); ext::shared_ptr<SimpleQuote> spotQuote(new SimpleQuote(spot));
Handle<Quote> spotHandle(spotQuote); ext::shared_ptr<BlackVolTermStructure> volQuote(
new BlackConstantVol(refDate, cal, vol, dc));
Handle<BlackVolTermStructure> volHandle(volQuote); // Specify the jump intensity, jump mean and
// jump volatility objects Real jumpIntensity = 0.2; // lambda
Real jumpVolatility = 0.3;
Real jumpMean = 0.0; ext::shared_ptr<SimpleQuote> jumpInt(new SimpleQuote(jumpIntensity));
ext::shared_ptr<SimpleQuote> jumpVol(new SimpleQuote(jumpVolatility));
ext::shared_ptr<SimpleQuote> jumpMn(new SimpleQuote(jumpMean)); Handle<Quote> jumpI(jumpInt), jumpV(jumpVol), jumpM(jumpMn); ext::shared_ptr<BlackScholesMertonProcess> bsmProcess(
new BlackScholesMertonProcess(
spotHandle, rqHandle, rdHandle, volHandle)); unsigned long seed = 12324u;
MersenneTwisterUniformRng unifMt(seed);
MersenneTwisterUniformRng unifMtJ(25u); typedef BoxMullerGaussianRng<MersenneTwisterUniformRng> GAUSS; GAUSS bmGauss(unifMt);
GAUSS jGauss(unifMtJ); ext::shared_ptr<Merton76JumpDiffusionProcess<GAUSS>> mtProcess(
new Merton76JumpDiffusionProcess<GAUSS>(
spotHandle, rqHandle, rdHandle, volHandle,
jumpI, jumpM, jumpV, jGauss)); Time dt = 0.004, t = 0.0;
Real x = spotQuote->value();
Real y = spotQuote->value();
Real dw;
Size numVals = 250; std::cout << "Time, Jump, NoJump" << std::endl;
std::cout << t << ", " << x << ", " << y << std::endl; for (Size j = 1; j <= numVals; ++j) {
dw = bmGauss.next().value;
x = mtProcess->evolve(t, x, dt, dw);
y = bsmProcess->evolve(t, y, dt, dw);
std::cout << t + dt << ", " << x << ", " << y << std::endl;
t += dt;
} return EXIT_SUCCESS;
}

参考文献

  1. 《金融工程中的蒙特卡罗方法》

QuantLib 金融计算——高级话题之模拟跳扩散过程的更多相关文章

  1. QuantLib 金融计算

    我的微信:xuruilong100 <Implementing QuantLib>译后记 QuantLib 金融计算 QuantLib 入门 基本组件之 Date 类 基本组件之 Cale ...

  2. QuantLib 金融计算——数学工具之随机数发生器

    目录 QuantLib 金融计算--数学工具之随机数发生器 概述 伪随机数 正态分布(伪)随机数 拟随机数 HaltonRsg SobolRsg 两类随机数的收敛性比较 如果未做特别说明,文中的程序都 ...

  3. QuantLib 金融计算——随机过程之概述

    目录 QuantLib 金融计算--随机过程之概述 框架 用法与接口 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之概述 载入模块 import Q ...

  4. QuantLib 金融计算——随机过程之一般 Black Scholes 过程

    目录 QuantLib 金融计算--随机过程之一般 Black Scholes 过程 一般 Black Scholes 过程 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib ...

  5. QuantLib 金融计算——随机过程之 Heston 过程

    目录 QuantLib 金融计算--随机过程之 Heston 过程 Heston 过程 参考文献 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--随机过程之 H ...

  6. QuantLib 金融计算——收益率曲线之构建曲线(5)

    目录 QuantLib 金融计算--收益率曲线之构建曲线(5) 概述 Nelson-Siegel 模型家族的成员 Nelson-Siegel 模型 Svensson 模型 修正 Svensson 模型 ...

  7. QuantLib 金融计算——基本组件之 Currency 类

    目录 QuantLib 金融计算--基本组件之 Currency 类 概述 构造函数 成员函数 如果未做特别说明,文中的程序都是 python3 代码. QuantLib 金融计算--基本组件之 Cu ...

  8. QuantLib 金融计算——修复 BatesProcess 中的两个 Bug

    QuantLib 金融计算--修复 BatesProcess 中的两个 Bug 我发现了 BatesProcess 中的两个 Bug: 基类 HestonProcess::factors 的返回值取决 ...

  9. QuantLib 金融计算——QuantLib 入门

    目录 QuantLib 金融计算--QuantLib 入门 简介 主要功能 安装与使用 学习指南 The HARD Way The EASY Way QuantLib 金融计算--QuantLib 入 ...

随机推荐

  1. hdu-1141

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1141 参考文章:https://blog.csdn.net/fei____fei/article/de ...

  2. Linux命令:ps

    Linux中的ps命令是Process Status的缩写.ps命令用来列出系统中当前运行的那些进程.ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信 ...

  3. Ubuntu 16.04安装MySQL及遇到的问题解决方案

    使用以下命令即可进行MySQL安装: sudo apt-get install mysql-server 上述命令会安装以下包: apparmor mysql-client-5.7 mysql-com ...

  4. UVa 11292 Dragon of Loowater (水题,排序)

    题意:有n个条龙,在雇佣勇士去杀,每个勇士能力值为x,只能杀死头的直径y小于或等于自己能力值的龙,只能被雇佣一次,并且你要给x赏金,求最少的赏金. 析:很简单么,很明显,能力值高的杀直径大的,低的杀直 ...

  5. MVC 图片上传(转)

    转自:http://www.cnblogs.com/Tiramisu/archive/2009/02/06/1385405.html MVC 上传图片   直接上代码: 页面:Index.aspx C ...

  6. OKHttp概览

    1,整体思路 从使用方法出发,首先是怎么使用,其次是我们使用的功能在内部是如何实现的,实现方案上有什么技巧,有什么范式.全文基本上是对 OkHttp 源码的一个分析与导读,非常建议大家下载 OkHtt ...

  7. spring boot搭建Hello Word

    一.安装与配置jdk 二.安装与配置maven 安装好maven,必须配置环境变量 通过cmd命令查询maven是否安装成功,以下是安装成功的界面 修改setting.xml的配置,制定本地仓库的路径 ...

  8. 同一台服务器配置多个tomcat服务的方法

    要在同一台服务器上配置多个tomcat服务,需要解决以下几个问题 (1) 不同的tomcat启动和关闭监听不同的端口 (2) 不同的tomcat的启动文件startup.sh 中要指定各自的CATAL ...

  9. Linux测试上行和下载速率

    下载安装speedtest-cli测试工具 方法一: pip3 install speedtest-cli 方法二: wget https://github.com/sivel/speedtest-c ...

  10. 新建/初始化git项目

    Command line instructions Git global setup git config --global user.name "你的名字" git config ...