一、RDD的概述

1.1 什么是RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。

1.2 RDD的属性

(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

1.3 WordCount粗图解RDD

其中hello.txt

二、RDD的创建方式

2.1 读取文件生成

可以从Hadoop支持的任何存储源创建分布式数据集,包括本地文件系统,HDFS,Cassandra,HBase等

scala> val file = sc.textFile("/spark/hello.txt")

2.2 并行化方式创建RDD

由一个已经存在的Scala集合创建。

scala> val array = Array(,,,,)
array: Array[Int] = Array(, , , , ) scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[] at parallelize at <console>: scala>

2.3 其他方式

读取数据库等等其他的操作。也可以生成RDD。

RDD可以通过其他的RDD转换而来的。

三、RDD编程API

Spark支持两个类型(算子)操作:Transformation和Action

3.1 Transformation

主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。

常用的Transformation

转换

含义

map(func)

返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成

filter(func)

返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成

flatMap(func)

类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)

mapPartitions(func)

类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]

mapPartitionsWithIndex(func)

类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是

(Int, Interator[T]) => Iterator[U]

sample(withReplacement, fraction, seed)

根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子

union(otherDataset)

对源RDD和参数RDD求并集后返回一个新的RDD

intersection(otherDataset)

对源RDD和参数RDD求交集后返回一个新的RDD(交集)

distinct([numTasks]))

对源RDD进行去重后返回一个新的RDD

groupByKey([numTasks])

在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD

reduceByKey(func, [numTasks])

在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

先按分区聚合 再总的聚合   每次要跟初始值交流 例如:aggregateByKey(0)(_+_,_+_) 对k/y的RDD进行操作

sortByKey([ascending], [numTasks])

在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD

sortBy(func,[ascending], [numTasks])

与sortByKey类似,但是更灵活 第一个参数是根据什么排序  第二个是怎么排序 false倒序   第三个排序后分区数  默认与原RDD一样

join(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD  相当于内连接(求交集)

cogroup(otherDataset, [numTasks])

在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD

cartesian(otherDataset)

两个RDD的笛卡尔积  的成很多个K/V

pipe(command, [envVars])

调用外部程序

coalesce(numPartitions)   

重新分区 第一个参数是要分多少区,第二个参数是否shuffle 默认false  少分区变多分区 true   多分区变少分区 false

repartition(numPartitions)

重新分区 必须shuffle  参数是要分多少区  少变多

repartitionAndSortWithinPartitions(partitioner)

重新分区+排序  比先分区再排序效率高  对K/V的RDD进行操作

foldByKey(zeroValue)(seqOp)

该函数用于K/V做折叠,合并处理 ,与aggregate类似   第一个括号的参数应用于每个V值  第二括号函数是聚合例如:_+_

combineByKey

合并相同的key的值 rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)

partitionBy(partitioner)

对RDD进行分区  partitioner是分区器 例如new HashPartition(2

cache

RDD缓存,可以避免重复计算从而减少时间,区别:cache内部调用了persist算子,cache默认就一个缓存级别MEMORY-ONLY ,而persist则可以选择缓存级别

persist

Subtract(rdd)

返回前rdd元素不在后rdd的rdd(差集)

leftOuterJoin

leftOuterJoin类似于SQL中的左外关联left outer join,返回结果以前面的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可。

rightOuterJoin

rightOuterJoin类似于SQL中的有外关联right outer join,返回结果以参数中的RDD为主,关联不上的记录为空。只能用于两个RDD之间的关联,如果要多个RDD关联,多关联几次即可

subtractByKey

substractByKey和基本转换操作中的subtract类似只不过这里是针对K的,返回在主RDD中出现,并且不在otherRDD中出现的元素

3.2 Action

触发代码的运行,我们一段spark代码里面至少需要有一个action操作。

常用的Action:

动作

含义

reduce(func)

通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的

collect()

在驱动程序中,以数组的形式返回数据集的所有元素

count()

返回RDD的元素个数

first()

返回RDD的第一个元素(类似于take(1))

take(n)

返回一个由数据集的前n个元素组成的数组

takeSample(withReplacement,num, [seed])

返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子

takeOrdered(n[ordering])

使用自然顺序或自定义比较器返回RDD 的前n个元素。

saveAsTextFile(path)

将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path)

将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path)

使用Java序列化以简单格式编写数据集的元素,然后可以使用Java序列化加载SparkContext.objectFile()

countByKey()

针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。

foreach(func)

在数据集的每一个元素上,运行函数func进行更新。

aggregate

先对分区进行操作,在总体操作

reduceByKeyLocally

lookup

top

fold

foreachPartition

3.3 WordCount代码编写

使用maven进行项目构建

(1)使用scala进行编写

查看官方网站,需要导入2个依赖包

详细代码

SparkWordCountWithScala.scala

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} object SparkWordCountWithScala {
def main(args: Array[String]): Unit = { val conf = new SparkConf()
/**
* 如果这个参数不设置,默认认为你运行的是集群模式
* 如果设置成local代表运行的是local模式
*/
conf.setMaster("local")
//设置任务名
conf.setAppName("WordCount")
//创建SparkCore的程序入口
val sc = new SparkContext(conf)
//读取文件 生成RDD
val file: RDD[String] = sc.textFile("E:\\hello.txt")
//把每一行数据按照,分割
val word: RDD[String] = file.flatMap(_.split(","))
//让每一个单词都出现一次
val wordOne: RDD[(String, Int)] = word.map((_,1))
//单词计数
val wordCount: RDD[(String, Int)] = wordOne.reduceByKey(_+_)
//按照单词出现的次数 降序排序
val sortRdd: RDD[(String, Int)] = wordCount.sortBy(tuple => tuple._2,false)
//将最终的结果进行保存
sortRdd.saveAsTextFile("E:\\result")
sc.stop()
}

运行结果

(2)使用java jdk7进行编写

SparkWordCountWithJava7.java

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator; public class SparkWordCountWithJava7 {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("WordCount");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> fileRdd = sc.textFile("E:\\hello.txt"); JavaRDD<String> wordRDD = fileRdd.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String line) throws Exception {
return Arrays.asList(line.split(",")).iterator();
}
}); JavaPairRDD<String, Integer> wordOneRDD = wordRDD.mapToPair(new PairFunction<String, String, Integer>() {
@Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<>(word, 1);
}
}); JavaPairRDD<String, Integer> wordCountRDD = wordOneRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {
@Override
public Integer call(Integer i1, Integer i2) throws Exception {
return i1 + i2;
}
}); JavaPairRDD<Integer, String> count2WordRDD = wordCountRDD.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> tuple) throws Exception {
return new Tuple2<>(tuple._2, tuple._1);
}
}); JavaPairRDD<Integer, String> sortRDD = count2WordRDD.sortByKey(false); JavaPairRDD<String, Integer> resultRDD = sortRDD.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
@Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> tuple) throws Exception {
return new Tuple2<>(tuple._2, tuple._1);
}
}); resultRDD.saveAsTextFile("E:\\result7"); }
}

(3)使用java jdk8进行编写

lambda表达式

SparkWordCountWithJava8.java

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
import java.util.Arrays; public class SparkWordCountWithJava8 {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setAppName("WortCount");
conf.setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> fileRDD = sc.textFile("E:\\hello.txt");
JavaRDD<String> wordRdd = fileRDD.flatMap(line -> Arrays.asList(line.split(",")).iterator());
JavaPairRDD<String, Integer> wordOneRDD = wordRdd.mapToPair(word -> new Tuple2<>(word, 1));
JavaPairRDD<String, Integer> wordCountRDD = wordOneRDD.reduceByKey((x, y) -> x + y);
JavaPairRDD<Integer, String> count2WordRDD = wordCountRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1));
JavaPairRDD<Integer, String> sortRDD = count2WordRDD.sortByKey(false);
JavaPairRDD<String, Integer> resultRDD = sortRDD.mapToPair(tuple -> new Tuple2<>(tuple._2, tuple._1));
resultRDD.saveAsTextFile("E:\\result8"); }

3.4 WordCount执行过程图

四、RDD的宽依赖和窄依赖

4.1 RDD依赖关系的本质内幕

由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系;RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。如图所示显示了RDD之间的依赖关系。

从图中可知:

窄依赖:是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等操作都会产生窄依赖;(独生子女)

宽依赖:是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖;(超生)

需要特别说明的是对join操作有两种情况:

(1)图中左半部分join:如果两个RDD在进行join操作时,一个RDD的partition仅仅和另一个RDD中已知个数的Partition进行join,那么这种类型的join操作就是窄依赖,例如图1中左半部分的join操作(join with inputs co-partitioned);

(2)图中右半部分join:其它情况的join操作就是宽依赖,例如图1中右半部分的join操作(join with inputs not co-partitioned),由于是需要父RDD的所有partition进行join的转换,这就涉及到了shuffle,因此这种类型的join操作也是宽依赖。

总结:

在这里我们是从父RDD的partition被使用的个数来定义窄依赖和宽依赖,因此可以用一句话概括下:如果父RDD的一个Partition被子RDD的一个Partition所使用就是窄依赖,否则的话就是宽依赖。因为是确定的partition数量的依赖关系,所以RDD之间的依赖关系就是窄依赖;由此我们可以得出一个推论:即窄依赖不仅包含一对一的窄依赖,还包含一对固定个数的窄依赖。

一对固定个数的窄依赖的理解:即子RDD的partition对父RDD依赖的Partition的数量不会随着RDD数据规模的改变而改变;换句话说,无论是有100T的数据量还是1P的数据量,在窄依赖中,子RDD所依赖的父RDD的partition的个数是确定的,而宽依赖是shuffle级别的,数据量越大,那么子RDD所依赖的父RDD的个数就越多,从而子RDD所依赖的父RDD的partition的个数也会变得越来越多。

4.2 依赖关系下的数据流视图

在spark中,会根据RDD之间的依赖关系将DAG图(有向无环图)划分为不同的阶段,对于窄依赖,由于partition依赖关系的确定性,partition的转换处理就可以在同一个线程里完成,窄依赖就被spark划分到同一个stage中,而对于宽依赖,只能等父RDD shuffle处理完成后,下一个stage才能开始接下来的计算。

因此spark划分stage的整体思路是:从后往前推,遇到宽依赖就断开,划分为一个stage;遇到窄依赖就将这个RDD加入该stage中。因此在图2中RDD C,RDD D,RDD E,RDDF被构建在一个stage中,RDD A被构建在一个单独的Stage中,而RDD B和RDD G又被构建在同一个stage中。

在spark中,Task的类型分为2种:ShuffleMapTaskResultTask

简单来说,DAG的最后一个阶段会为每个结果的partition生成一个ResultTask,即每个Stage里面的Task的数量是由该Stage中最后一个RDD的Partition的数量所决定的!而其余所有阶段都会生成ShuffleMapTask;之所以称之为ShuffleMapTask是因为它需要将自己的计算结果通过shuffle到下一个stage中;也就是说上图中的stage1和stage2相当于mapreduce中的Mapper,而ResultTask所代表的stage3就相当于mapreduce中的reducer。

在之前动手操作了一个wordcount程序,因此可知,Hadoop中MapReduce操作中的Mapper和Reducer在spark中的基本等量算子是map和reduceByKey;不过区别在于:Hadoop中的MapReduce天生就是排序的;而reduceByKey只是根据Key进行reduce,但spark除了这两个算子还有其他的算子;因此从这个意义上来说,Spark比Hadoop的计算算子更为丰富。

五、广播变量与累加器

在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本。这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序。通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator)

六、广播变量broadcast variable

6.1 广播变量的意义

如果我们要在分布式计算里面分发大对象,例如:字典,集合,黑白名单等,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么只是每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

6.2 广播变量图解

错误的,不使用广播变量

正确的,使用广播变量的情况

6.3 如何定义一个广播变量

val a = 3
val broadcast = sc.broadcast(a)

6.4如何还原一个广播变量

val c = broadcast.value

6.5 广播变量使用

val conf = new SparkConf()
conf.setMaster("local").setAppName("brocast")
val sc = new SparkContext(conf)
val list = List("hello hadoop")
val broadCast = sc.broadcast(list)
val lineRDD = sc.textFile("./words.txt")
lineRDD.filter { x => broadCast.value.contains(x) }.foreach { println}
sc.stop()

6.6 定义广播变量注意点

变量一旦被定义为一个广播变量,那么这个变量只能读,不能修改

6.7 注意事项

1、能不能将一个RDD使用广播变量广播出去?

不能,因为RDD是不存储数据的。可以将RDD的结果广播出去。

2、 广播变量只能在Driver端定义,不能在Executor端定义。

3、 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量的值。

4、如果executor端用到了Driver的变量,如果不使用广播变量在Executor有多少task就有多少Driver端的变量副本。

5、如果Executor端用到了Driver的变量,如果使用广播变量在每个Executor中只有一份Driver端的变量副本。

七、累加器

7.1 累加器的意义

在spark应用程序中,我们经常会有这样的需求,如异常监控,调试,记录符合某特性的数据的数目,这种需求都需要用到计数器,如果一个变量不被声明为一个累加器,那么它将在被改变时不会再driver端进行全局汇总,即在分布式运行时每个task运行的只是原始变量的一个副本,并不能改变原始变量的值,但是当这个变量被声明为累加器后,该变量就会有分布式计数的功能。

7.2 图解累加器

错误的图解

正确的图解

7.3 如何定义一个累加器

val a = sc.accumulator(0)

7.4 如何还原一个累加器

val b = a.value

7.5 累加器的使用

val conf = new SparkConf()
conf.setMaster("local").setAppName("accumulator")
val sc = new SparkContext(conf)
val accumulator = sc.accumulator(0)
sc.textFile("./words.txt").foreach { x =>{accumulator.add(1)}}
println(accumulator.value)
sc.stop()

7.6 注意事项

1、 累加器在Driver端定义赋初始值,累加器只能在Driver端读取最后的值,在Excutor端更新。

2、累加器不是一个调优的操作,因为如果不这样做,结果是错的

Spark(三)RDD与广播变量、累加器的更多相关文章

  1. Spark性能优化(2)——广播变量、本地缓存目录、RDD操作、数据倾斜

    广播变量 背景 一般Task大小超过10K时(Spark官方建议是20K),需要考虑使用广播变量进行优化.大表小表Join,小表使用广播的方式,减少Join操作. 参考:Spark广播变量与累加器 L ...

  2. Spark——DataFrames,RDD,DataSets、广播变量与累加器

    Spark--DataFrames,RDD,DataSets 一.弹性数据集(RDD) 创建RDD 1.1RDD的宽依赖和窄依赖 二.DataFrames 三.DataSets 四.什么时候使用Dat ...

  3. Spark RDD持久化、广播变量和累加器

    Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内 ...

  4. SparkCore | Rdd| 广播变量和累加器

    Spark中三大数据结构:RDD:  广播变量: 分布式只读共享变量: 累加器:分布式只写共享变量: 线程和进程之间 1.RDD中的函数传递 自己定义一些RDD的操作,那么此时需要主要的是,初始化工作 ...

  5. Spark学习之路 (四)Spark的广播变量和累加器

    一.概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上 ...

  6. 【Spark篇】---Spark中广播变量和累加器

    一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 ...

  7. Spark共享变量(广播变量、累加器)

    转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与 ...

  8. 【Spark-core学习之七】 Spark广播变量、累加器

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  9. Spark广播变量和累加器

    一.广播变量图解 二.代码 val conf = new SparkConf() conf.setMaster("local").setAppName("brocast& ...

随机推荐

  1. 二叉树(前序,中序,后序,层序)遍历递归与循环的python实现

    二叉树的遍历是在面试使比较常见的项目了.对于二叉树的前中后层序遍历,每种遍历都可以递归和循环两种实现方法,且每种遍历的递归实现都比循环实现要简洁.下面做一个小结. 一.中序遍历 前中后序三种遍历方法对 ...

  2. Hadoop生态圈-使用phoenix的API进行JDBC编程

    Hadoop生态圈-使用phoenix的API进行JDBC编程 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  3. Hadoop生态圈-hive五种数据格式比较

    Hadoop生态圈-hive五种数据格式比较 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  4. 博世传感器调试笔记(二)加速度及陀螺仪传感器BMI160

    一.功能参数简介bosch Sensortec公司推出的最新BMI160惯性测量单元将最顶尖的16位3轴超低重力加速度计和超低功耗3轴陀螺仪集成于单一封装.MI160采用14管脚LGA封装,尺寸为2. ...

  5. python操作mongo脚本

    #!/usr/bin/python# -*- coding: utf-8 -*- import sysimport osimport jsonfrom pymongo import MongoClie ...

  6. vuejs实现数据驱动视图原理

    什么是数据驱动 数据驱动是vuejs最大的特点.在vuejs中,所谓的数据驱动就是当数据发生变化的时候,用户界面发生相应的变化,开发者不需要手动的去修改dom. 比如说我们点击一个button,需要元 ...

  7. Java入门系列(四)内部类

    为什么需要内部类? 真正的原因是这样的,java中的内部类和接口加在一起,可以的解决常被C++程序员抱怨java中存在的一个问题没有多继承.实际上,C++的多继承设计起来很复杂,而java通过内部类加 ...

  8. IE6 下 DD_belatedPNG 引发的血案

    群里一朋友Q我,说遇到兼容性问题了,我说为何不用jQuery呢(因为他们公司要求尽量js写).他说用了,还是有问题,IE6下不行,其他都行.然后他发我代码,我一开始真以为是兼容性问题,比如数组对象最后 ...

  9. es6解构、中括号前加分号

    在写项目的时候,为了方便使用了下对象的解构,无奈又遇到一坑. 为什么会不能解构呢?因为这里的{}会导致歧义,因为 JavaScript 引擎会将{xxxxx}理解成一个代码块,从而发生语法错误.只有不 ...

  10. 2016.6.18——Implement strStr()

    Implement strStr() 本题收获: 1.考虑多种边界条件. 2.haystack.size() size_type 是无符号的,即为正数 在32位系统上定义为 unsigned int ...