画一个顶点为偶数的封闭的二维图,当然。这个图能够自交,给出画的过程中的一些轨迹点。求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分。

这个的话,有图中顶点数+部分数-棱数=2的定律,这是核心思想。也就是所谓的欧拉定律拓扑版,好吧,事实上细致想想也是可以想出这个规律来的。

做出这题纯属意外,因为给的点的坐标全是用整数表示,为了不用考虑精度问题,一開始。我就想仅仅用这些点。就是说不再算出其他交点之类的,就把答案算出,



由于当前轨迹与之前轨迹无非三种情况:规范与不规范相交,不相交



不相交当然就不用管了,相交的话,考虑两种情况下的顶点、棱的数量变化



可是不知道是不是题意有些细节没理解到,还是有些特殊的图的情况没考虑到。用这样的思路尽管代码比較精炼。可是一直wa



后来索性干脆把全部的顶点用行列式求出,然后再求棱。略微想想能够知道,棱的数目是在轨迹数目的基础上加上在轨迹中间,即在轨迹上。不在轨迹两点的交点数目



这里就须要通过叉积推断点是否在轨迹中间。因为题中没有给出精度要求……假设不给一个精度,而直接用叉积为0推断点是否在轨迹所在的直线上的话,会wa



由于直接用0。相当于。精度就是double的精度,也就是1e-15,所以后来改成了1e-9然后就过了。



须要注意的是,在杭电上也有相同的题,但明显杭电的oj比UVA的渣,杭电的g++比c++的精度运算损失少,所以在杭电上交用这样的不太好的方法写的代码,须要用g++交才干



过。

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double inf=1e4,eps=1e-9;
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
friend bool operator <(dot a,dot b){return a.x!=b.x?a.x<b.x:a.y<b.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
bool operator !=(dot a){return x!=a.x||y!=a.y;}
double operator *(dot a){return x*a.y-y*a.x;}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
bool isdil(dot a,dot b,dot c)
{
return a.x<=max(b.x,c.x)&&
a.y<=max(b.y,c.y)&&
min(b.x,c.x)<=a.x&&
min(b.y,c.y)<=a.y&&
a!=b&&a!=c;
}
bool isdbl(dot a,dot b,dot c){return fabs((a-c)*(b-c))<eps&&isdil(a,b,c);}
dot cross(dot a,dot b,dot c,dot d)
{
double e,f,g,h,i,j,k,l,m;
e=b.y-a.y;f=a.x-b.x;g=a.x*b.y-a.y*b.x;
h=d.y-c.y;i=c.x-d.x;j=c.x*d.y-c.y*d.x;
k=dot(e,h)*dot(f,i);
if(k==0)
return dot(inf,inf);
l=dot(g,j)*dot(f,i);
m=dot(e,h)*dot(g,j);
dot t=dot(l/k,m/k);
return isdil(t,a,b)&&isdil(t,c,d)?t:dot(inf,inf);
}
int main()
{
dot a[310],b[30000],t;
int i,n,j,k,ans,T=0;
while(cin>>n&&n)
{
for(i=0;i<n;i++)
{
cin>>a[i].x>>a[i].y;
b[i]=a[i];
}
k=n;
for(i=1;i<n;i++)
for(j=i+2;j<n;j++)
{
t=cross(a[i-1],a[i],b[j-1],b[j]);
if(t.x!=inf)
b[k++]=t;
}
sort(b,b+k);
k=unique(b,b+k)-b;
ans=1+n-k;
for(j=0;j<k;j++)
for(i=1;i<n;i++)
if(isdbl(b[j],a[i-1],a[i]))
ans++;
printf("Case %d: There are %d pieces.\n",++T,ans);
}
}

原题:

Description

Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a
graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in
the graph has even degree.

Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about
if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form
(X0, Y0) which moves the pencil to some starting position(X0,Y0). Each subsequent instruction is also of the form(X',Y'), which means to move the
pencil from the previous position to the new position(X',Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the
Euler machine will always issue an instruction that move the pencil back to the starting position(X0,
Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integerN4,
which is the number of instructions in the test case. The followingN pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates
of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated whenN is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces.

UVA LIVE-3263 - That Nice Euler Circuit的更多相关文章

  1. UVALive - 3263 That Nice Euler Circuit (几何)

    UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给 ...

  2. UVALi 3263 That Nice Euler Circuit(几何)

    That Nice Euler Circuit [题目链接]That Nice Euler Circuit [题目类型]几何 &题解: 蓝书P260 要用欧拉定理:V+F=E+2 V是顶点数; ...

  3. LA 3263 That Nice Euler Circuit(欧拉定理)

    That Nice Euler Circuit Little Joey invented a scrabble machine that he called Euler, after the grea ...

  4. 简单几何(求划分区域) LA 3263 That Nice Euler Circuit

    题目传送门 题意:一笔画,问该图形将平面分成多少个区域 分析:训练指南P260,欧拉定理:平面图定点数V,边数E,面数F,则V + F - E =  2.那么找出新增的点和边就可以了.用到了判断线段相 ...

  5. uvalive 3263 That Nice Euler Circuit

    题意:平面上有一个包含n个端点的一笔画,第n个端点总是和第一个端点重合,因此团史一条闭合曲线.组成一笔画的线段可以相交,但是不会部分重叠.求这些线段将平面分成多少部分(包括封闭区域和无限大区域). 分 ...

  6. UVAlive 3263 That Nice Euler Circuit(欧拉定理)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=21363 [思路] 欧拉定理:V+F-E=2.则F=E-V+2. 其 ...

  7. UVALive 3263: That Nice Euler Circuit (计算几何)

    题目链接 lrj训练指南 P260 //==================================================================== // 此题只需要考虑线 ...

  8. UVa 10735 - Euler Circuit(最大流 + 欧拉回路)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. UVa 10735 (混合图的欧拉回路) Euler Circuit

    题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话, ...

随机推荐

  1. java基础70 负责静态的网页制作语言XML(网页知识)

    HTML:负责网页结构的CSS:负责网页的样式(美观)JavaScript:负责客户(浏览器)端与用户进行交互 1.HTML语言的特点 1.由标签组成    2.语法结构松散     3.大小写不区分 ...

  2. java基础40 可变参数、自动装箱和自动拆箱

    一.可变参数 可变参数是jdk1.5新特性 1.1.可变参数的格式 数据类型...变量名 // 数据类型...变量名public static void sum(int...arr){ } 1.2.可 ...

  3. hash算法原理详解

    转载出处http://blog.csdn.net/tanggao1314/article/details/51457585 一.概念 哈希表就是一种以 键-值(key-indexed) 存储数据的结构 ...

  4. No.1 selenium学习之路之浏览器操作

    selenium基础,首先就是浏览器的相关操作 下面描述几种浏览器的常用操作 1.打开浏览器 webdriver后面添加想要打开的浏览器 Ie或者Chrome 2.打开指定页面(百度) 3.休眠时间 ...

  5. **后台怎么处理JSON数据中含有双引号?

    http://bbs.csdn.net/topics/390578406?page=1 注意是后台,不是用js另外我这个json是直接取得别人的传过来的字符串,不是我自己拼写的,所以我自己不能做到转义 ...

  6. JavaScript 三个常用对话框

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. sicily 1051. Biker's Trip Odomete

    DescriptionMost bicycle speedometers work by using a Hall Effect sensor fastened to the front fork o ...

  8. CCF CSP 201312-4 有趣的数

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201312-4 有趣的数 问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0 ...

  9. Adapter.notifyDataSetChanged()源码分析以及与ListView.setAdapter的区别

    一直很好奇,notifyDataSetChanged究竟是重绘了整个ListView还是只重绘了被修改的那些Item,它与重新设置适配器即调用setAdapter的区别在哪里?所以特地追踪了一下源码, ...

  10. HBase(八)HBase的协处理器

    一.协处理器简介 1. 起源 Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hbase 中,统计数 ...