这是一道\(SA\)的练手好题

建议做之前先去做一下2408

之后你就肯定会做这道题了

首先上面那道题的答案就是

\[\sum_{i=1}^nn+1-sa[i]-het[i]
\]

就是对于每一个后缀求出其能产生的子串,之后减掉和之前本质相同的子串

对于这个题,我们需要求出所有前缀的本质不同的子串个数

先无脑敲上\(sa\)和\(het\)的板子,之后我们只需要往里面动态添加后缀就好了

但是如果正着处理的话会有一个非常显然的问题,也就是我们加进去一个后缀,但是这个后缀和之前的一些后缀形成的\(lcp\)长度超过当前的长度,会导致我们很难计算

所以我们需要把字符串倒过来,之后每次往里面添加一个后缀就只相当于往里面添加了一个字符

反置字符串显然不会令子串变得不相等,于是我们可以完美解决这个问题

之后我们维护上面的那个柿子就好了,由于我们插入的\(sa\)值并不连续,所以我们不能直接用\(het\),而是\(het\)的最小值

于是我们用一个\(st\)表来查询\(het\)的最小值,之后每插入一个点相当于要断裂一个原来存在的排名连续的后缀,所以还需要一个\(set\)来找前驱和后继

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<set>
#define re register
#define LL long long
#define maxn 100005
#define set_it std::set<int>::iterator
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
re char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int a[maxn],rk[maxn],tp[maxn],tax[maxn],sa[maxn],het[maxn],b[maxn],to[maxn];
int St[maxn][18],log_2[maxn];
int n,m,sz;LL ans=1;
std::set<int> s;
inline void qsort()
{
for(re int i=0;i<=m;i++) tax[i]=0;
for(re int i=1;i<=n;i++) tax[rk[i]]++;
for(re int i=1;i<=m;i++) tax[i]+=tax[i-1];
for(re int i=n;i;--i) sa[tax[rk[tp[i]]]--]=tp[i];
}
inline int Pre(int x)
{
s.insert(x); set_it i=s.find(x);
if(i==s.begin()) return -1; --i; return *i;
}
inline int Nxt(int x) {set_it i=s.find(x);++i;if(i==s.end()) return -1;return *i;}
inline int find(int x)
{
int l=1,r=sz;while(l<=r)
{
int mid=l+r>>1;if(b[mid]==x) return mid;
if(b[mid]<x) l=mid+1;else r=mid-1;
}return 0;
}
inline int ask(int l,int r) {int k=log_2[r-l+1];return min(St[l][k],St[r-(1<<k)+1][k]);}
int main()
{
n=read();for(re int i=n;i;--i) a[i]=read(),b[i]=a[i];
std::sort(b+1,b+n+1);m=sz=std::unique(b+1,b+n+1)-b-1;
for(re int i=1;i<=n;i++) a[i]=find(a[i]);
for(re int i=1;i<=n;i++) rk[i]=a[i],tp[i]=i;
qsort();
for(re int w=1,p=0;p<n;w<<=1,m=p)
{
p=0;
for(re int i=1;i<=w;i++) tp[++p]=n-w+i;
for(re int i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
qsort();for(re int i=1;i<=n;i++) std::swap(rk[i],tp[i]);
rk[sa[1]]=p=1;
for(re int i=2;i<=n;i++) rk[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
}
int k=0;
for(re int i=1;i<=n;i++)
{
if(k) --k;
int j=sa[rk[i]-1];
while(a[i+k]==a[j+k]) ++k;
het[rk[i]]=k;
}
for(re int i=2;i<=n;i++) log_2[i]=1+log_2[i>>1];
for(re int i=1;i<=n;i++) St[i][0]=het[i];
for(re int j=1;j<=17;j++)
for(re int i=1;i+(1<<j)-1<=n;i++)
St[i][j]=min(St[i][j-1],St[i+(1<<(j-1))][j-1]);puts("1");s.insert(rk[n]);
for(re int i=n-1;i;--i)
{
ans+=n-i+1;
int x=Pre(rk[i]);
if(x!=-1) {int t=ask(x+1,rk[i]);ans+=to[x],ans-=t;to[x]=t;}
x=Nxt(rk[i]);
if(x!=-1) to[rk[i]]=ask(rk[i]+1,x),ans-=to[rk[i]];
printf("%lld\n",ans);
}
return 0;
}

【[SDOI2016]生成魔咒】的更多相关文章

  1. BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

    #include<iostream> #include<cstdio> #include<cstring> #include<queue> #inclu ...

  2. BZOJ 4516: [Sdoi2016]生成魔咒 [后缀自动机]

    4516: [Sdoi2016]生成魔咒 题意:询问一个字符串每个前缀有多少不同的子串 做了一下SDOI2016R1D2,题好水啊随便AK 强行开map上SAM 每个状态的贡献就是\(Max(s)-M ...

  3. BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay

    BZOJ_4516_[Sdoi2016]生成魔咒_后缀数组+ST表+splay Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔 ...

  4. P4070 [SDOI2016]生成魔咒

    题目地址:P4070 [SDOI2016]生成魔咒 相信看到题目之后很多人跟我的思路是一样的-- 肯定要用 SA(P3809 [模板]后缀排序) 肯定要会求本质不同的子串个数(P2408 不同子串个数 ...

  5. bzoj4516 / P4070 [SDOI2016]生成魔咒

    P4070 [SDOI2016]生成魔咒 后缀自动机 每插入一个字符,对答案的贡献为$len[last]-len[fa[last]]$ 插入字符范围过大,所以使用$map$存储. (去掉第35行就是裸 ...

  6. 【LG4070】[SDOI2016]生成魔咒

    [LG4070][SDOI2016]生成魔咒 题面 洛谷 题解 如果我们不用在线输的话,那么答案就是对于所有状态\(i\) \[ \sum (i.len-i.fa.len) \] 现在我们需要在线询问 ...

  7. 洛谷 P4070 [SDOI2016]生成魔咒 解题报告

    P4070 [SDOI2016]生成魔咒 题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 \(1\).\(2\) 拼凑起来形成一个魔咒串 \([1,2]\). 一个魔咒 ...

  8. [Sdoi2016]生成魔咒[SAM or SA]

    4516: [Sdoi2016]生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 569[Submit][Statu ...

  9. 4516: [Sdoi2016]生成魔咒

    4516: [Sdoi2016]生成魔咒 链接 题意: 求本质不同的子串. 分析: 后缀数组或者SAM都可以. 考虑SAM中每个点的可以表示的子串是一个区间min(S)~max(S),把每个点的这个区 ...

  10. [SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

    [SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次 ...

随机推荐

  1. [javaEE] http协议详细

    上一篇:http://www.cnblogs.com/taoshihan/p/5346731.html HTTP请求 请求行 GET /taoshihan/p/5346731.html HTTP/1. ...

  2. Storm框架:Storm整合springboot

    我们知道Storm本身是一个独立运行的分布式流式数据处理框架,Springboot也是一个独立运行的web框架.那么如何在Strom框架中集成Springboot使得我们能够在Storm开发中运用Sp ...

  3. Java学习个人总结

    声明:个人原创,转载请在文章开头明显位置注明出处:https://www.cnblogs.com/sunshine5683/p/10063960.html 学习从来都是一个阶段的学习,然后进行整理与总 ...

  4. nginx 错误日志分析

    502 1.查看nginx错误日志 tailf /data/log/nginx/error.log // :: [error] #: * recv() failed (: Connection res ...

  5. mysql数据库定时任务

    应用系统运行中,经常需要定时执行一些任务,例如:定时更新汇总数据,定时更新状态数据等,目前 Treesoft数据库管理系统 增加[定时任务]功能,直接通过页面简单配置,即可按调度规则定时执行SQL任务 ...

  6. python中GIL和线程与进程

    线程与全局解释器锁(GIL) 一.线程概论 1.何为线程 每个进程有一个地址空间,而且默认就有一个控制线程.如果把一个进程比喻为一个车间的工作过程那么线程就是车间里的一个一个流水线. 进程只是用来把资 ...

  7. centos 删除文件和目录

    每次都记不住,发个文章记录一下.直接rm就可以了,不过要加两个参数-rf 即:rm -rf 目录名字-r 就是向下递归,不管有多少级目录,一并删除-f 就是直接强行删除,不作任何提示的意思 删除文件夹 ...

  8. redis 事务、Jedis事务处理流程

    127.0.0.1:6379> multiOK127.0.0.1:6379> sadd myset a b cQUEUED  ——>并没有执行,排队等待127.0.0.1:6379& ...

  9. Array类型

    Array类型 Array也是ECMAScript中常用类型之一,其特点是数组中的每一项都可以保存任何类型的数据,数组的大小可以动态调整. 创建数组 方式1:使用Array构造函数 var books ...

  10. Android组件系列----Activity组件详解

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/3 ...